关联是两个或多个变量取值之间存在的一类重要的可被败枣发现的某种规律性。关联分析目的是寻找给定数据记录集中数据项之间隐藏的关联关系,描述数据之间的密切度。
几个基本概念
1. 项集
这是一个集合的概念,在一篮子商品中仿轮的一件消费品即为一项(Item),则若干项的集合为项集,如{啤酒,尿布}构成一个二元项集。
2. 关联规则
一般记为的形式,X为先决条件,Y为相应的关联结果,用于表示数据内隐含的关联性。如:,表示购买了尿布的消费者往往也会购买啤酒。
关联性强度如何,由三个概念——支持度、置信度、提升度来控制和评价。
例:有10000个消费者购买了商品,其中购买尿布1000个,购买啤酒2000个,购买面包500个,同时购买尿布和面包800个,同时购买尿布和面包100个。
3. 支持度(Support)
支持度是指在所有项集中{X, Y}出现的可能性,即项集中同时含有X和Y的概率:
该指标作为建立强关联规则的第一个门槛,衡量了所考察关联规则在“量”上的多少。通过设定最小阈值(minsup),剔除“出镜率”较低的无意义规则,保留出现较为频繁备枯信的项集所隐含的规则。
设定最小阈值为5%,由于{尿布,啤酒}的支持度为800/10000=8%,满足基本输了要求,成为频繁项集,保留规则;而{尿布,面包}的支持度为100/10000=1%,被剔除。
4. 置信度(Confidence)
置信度表示在先决条件X发生的条件下,关联结果Y发生的概率:
这是生成强关联规则的第二个门槛,衡量了所考察的关联规则在“质”上的可靠性。相似的,我们需要对置信度设定最小阈值(mincon)来实现进一步筛选。
具体的,当设定置信度的最小阈值为70%时,置信度为800/1000=80%,而的置信度为800/2000=40%,被剔除。
5. 提升度(lift)
提升度表示在含有X的条件下同时含有Y的可能性与没有X这个条件下项集中含有Y的可能性之比:
该指标与置信度同样衡量规则的可靠性,可以看作是置信度的一种互补指标。
R中Apriori算法
算法步骤:
1. 选出满足支持度最小阈值的所有项集,即频繁项集;
2. 从频繁项集中找出满足最小置信度的所有规则。
>library(arules) #加载arules包
>click_detail =read.transactions("click_detail.txt",format="basket",sep=",",cols=c(1)) #读取txt文档(文档编码为ANSI)
>rules <- apriori(click_detail, parameter =list(supp=0.01,conf=0.5,target="rules")) #调用apriori算法
>rules
set of419 rules
>inspect(rules[1:10]) #查看前十条规则
解释
1)library(arules):加载程序包arules,当然如果你前面没有下载过这个包,就要先install.packages(arules)
2)click_detail =read.transactions("click_detail.txt",format="basket",sep=",",cols=c(1)):读入数据
read.transactions(file, format =c("basket", "single"), sep = NULL,
cols = NULL, rm.duplicates =FALSE, encoding = "unknown")
file:文件名,对应click_detail中的“click_detail.txt”
format:文件格式,可以有两种,分别为“basket”,“single”,click_detail.txt中用的是basket。
basket: basket就是篮子,一个顾客买的东西都放到同一个篮子,所有顾客的transactions就是一个个篮子的组合结果。如下形式,每条交易都是独立的。
文件形式:
item1,item2
item1
item2,item3
读入后:
items
1 {item1,
item2}
2 {item1}
3 {item2,
item3}
single: single的意思,顾名思义,就是单独的交易,简单说,交易记录为:顾客1买了产品1, 顾客1买了产品2,顾客2买了产品3……(产品1,产品2,产品3中可以是单个产品,也可以是多个产品),如下形式:
trans1 item1
trans2 item1
trans2 item2
读入后:
items transactionID
1 {item1}trans1
2 {item1,
item2}trans2
sep:文件中数据是怎么被分隔的,默认为空格,click_detail里面用逗号分隔
cols:对basket, col=1,表示第一列是数据的transaction ids(交易号),如果col=NULL,则表示数据里面没有交易号这一列;对single,col=c(1,2)表示第一列是transaction ids,第二列是item ids
rm.duplicates:是否移除重复项,默认为FALSE
encoding:写到这里研究了encoding是什么意思,发现前面txt可以不是”ANSI”类型,如果TXT是“UTF-8”,写encoding=”UTF-8”,就OK了.
3)rules <- apriori(click_detail,parameter = list(supp=0.01,conf=0.5,target="rules")):apriori函数
apriori(data, parameter = NULL, appearance = NULL, control = NULL)
data:数据
parameter:设置参数,默认情况下parameter=list(supp=0.1,conf=0.8,maxlen=10,minlen=1,target=”rules”)
supp:支持度(support)
conf:置信度(confidence)
maxlen,minlen:每个项集所含项数的最大最小值
target:“rules”或“frequent itemsets”(输出关联规则/频繁项集)
apperence:对先决条件X(lhs),关联结果Y(rhs)中具体包含哪些项进行限制,如:设置lhs=beer,将仅输出lhs含有beer这一项的关联规则。默认情况下,所有项都将无限制出现。
control:控制函数性能,如可以设定对项集进行升序sort=1或降序sort=-1排序,是否向使用者报告进程(verbose=F/T)
补充
通过支持度控制:rules.sorted_sup = sort(rules, by=”support”)
通过置信度控制:rules.sorted_con = sort(rules, by=”confidence”)
通过提升度控制:rules.sorted_lift = sort(rules, by=”lift”)
Apriori算法
两步法:
1. 频繁项集的产生:找出所有满足最小支持度阈值的项集,称为频繁项集;
2. 规则的产生:对于每一个频繁项集l,找出其中所有的非空子集;然后,对于每一个这样的子集a,如果support(l)与support(a)的比值大于最小可信度,则存在规则a==>(l-a)。
频繁项集产生所需要的计算开销远大于规则产生所需的计算开销
频繁项集的产生
几个概念:
1, 一个包含K个项的数据集,可能产生2^k个候选集
2,先验原理:如果一个项集是频繁的,则它的所有子集也是频繁的(理解了频繁项集的意义,这句话很容易理解的);相反,如果一个项集是非频繁的,则它所有子集也一定是非频繁的。
3基于支持度(SUPPORT)度量的一个关键性质:一个项集的支持度不会超过它的子集的支持度(很好理解,支持度是共同发生的概率,假设项集{A,B,C},{A,B}是它的一个自己,A,B,C同时发生的概率肯定不会超过A,B同时发生的概率)。
上面这条规则就是Apriori中使用到的,如下图,当寻找频繁项集时,从上往下扫描,当遇到一个项集是非频繁项集(该项集支持度小于Minsup),那么它下面的项集肯定就是非频繁项集,这一部分就剪枝掉了。
一个例子(百度到的一个PPT上的):
当我在理解频繁项集的意义时,在R上简单的复现了这个例子,这里采用了eclat算法,跟apriori应该差不多:
代码:
item <- list(
c("bread","milk"),
c("bread","diaper","beer","eggs"),
c("milk","diaper","beer","coke"),
c("bread","milk","diaper","beer"),
c("bread","milk","diaper","coke")
)
names(item) <- paste("tr",c(1:5),sep = "")
item
trans <- as(item,"transactions") #将List转为transactions型
rules = eclat(trans,parameter = list(supp = 0.6,
target ="frequent itemsets"),control = list(sort=1))
inspect(rules) #查看频繁项集
运行后结果:
>inspect(rules)
items support
1{beer,
diaper}0.6
2{diaper,
milk} 0.6
3{bread,
diaper}0.6
4{bread,
milk} 0.6
5{beer} 0.6
6{milk} 0.8
7{bread} 0.8
8{diaper} 0.8
以上就是该例子的所有频繁项集,然后我发现少了{bread,milk,diaper}这个项集,回到例子一看,这个项集实际上只出现了两次,所以是没有这个项集的。
规则的产生
每个频繁k项集能产生最多2k-2个关联规则
将项集Y划分成两个非空的子集X和Y-X,使得X ->Y-X满足置信度阈值
定理:如果规则X->Y-X不满足置信度阈值,则X’->Y-X’的规则一定也不满足置信度阈值,其中X’是X的子集
Apriori按下图进行逐层计算,当发现一个不满足置信度的项集后,该项集所有子集的规则都可以剪枝掉了。
数控中的R表示:1.圆弧半径2.锥度的大小径差枯携做(一般为负值)
1的算法超级简隐绝单,直径为10
那么R=5
2的算法考点头脑,得看车削的方向,一般我们做的左手打夹头的那种机床,也就是右边(右边小,左边大的锥体)
往左边车削,那么就是小的那个直径减去大的直径,所以是负值没衡。公式R=d-D
(小减大)
基于R语言的梯度推进算法介绍
通常来说,我们可以从两个方面来提高一个预测模型的准确性:完善特征工程(feature engineering)或是直接使用Boosting算法。通过大量数据科学竞赛的试炼,我们可以发现人们更钟爱于Boosting算法,这是因为和其他方法相比,它在产生类似的结果时往往更加节约时间。
Boosting算法有很多种,比如梯度推进(Gradient Boosting)、XGBoost、AdaBoost、Gentle Boost等等。每一种算法都有自己不同的理论基础,通过对它们进行运用,算法之间细微的差别也能够被我们所察觉。如果你是一个新手,那么太好了,从现在开始,你可以用大约一周的时间来了解和学习这些知识。
在本文中,笔者将会向你介绍梯度推进算法的基本概念及其复杂烂凳虚性,此外,文中还分享了一个关于如何在R语言中对该算法进行实现的例子。
快问快答每当谈及Boosting算法,下列两个概念便会频繁的出现:Bagging和Boosting。那么,这两个概念是什么,它们之间究竟有什么区别呢?让我们快速简要地在这里解释一下:
Bagging:对数据进行随机抽样、建立学习算法并且通过简单平均来得到最终概率结论的一种方法。
Boosting:与Bagging类似,但在样本选择方面显得更为聪明一些——在算法进行过程中,对难以进行分类的观测值赋予了越来越大的权重。
我们知道你可能会在这方面产生疑问:什么叫做越来越大?我怎么知道我应该给一个被错分的观测值额外增加多少的权重呢?请保持冷静,我们将在接下来的章节里为你解答。
从一个简单的例子出发假设你有一个初始的预测模型M需要进行准确度的提高,你知道这个模型目前的准确度为80%(通过任何形式度量),那么接下来你应该怎么做呢?
有一个方法是,我们可以通过一组新的输入变量来构建一个全新的模型,然后对它们进行集成学习。但是,笔者在此要提出一个更简单的建议,如下所示:
Y = M(x) + error
如果我们能够观测到误差项并非白噪声,而是与我们的模型输出(Y)有着相同的相关性,那么我们为什么不通过这个误差项来对模型的准确度进行提升呢?比方说:
error = G(x) + error2
或许饥燃,你会发现模型的准确率提高到了一个更高的数字,比如84%。那么下一步让我们对error2进行回归。
error2 = H(x) + error3
然后我们将上述式子组合起来:
Y = M(x) + G(x) + H(x) + error3
这样的结果可能会让模型的准确度更进一步,超过84%。如果我们能像这样为三个学习算法找到一个最佳权重分配,
Y = alpha * M(x) + beta * G(x) + gamma * H(x) + error4
那么,我们可能就构建了一个更好的模型。
上面所述的便是Boosting算法的一个基本原则,当我初次接触到这一理论时,我的脑海中很快地冒出了这两个小问题:
1.我们如何判断回归/分类方程中的误差项是不是白噪声?如果无法判断,我们怎么能用这种算法呢?
2.如果这种算法真的这么强大,我们是不是可以做到接近100%的模型准确度?
接下来,我们将会对这些问题进行解答,但是需要明确的是,Boosting算法的目标对象通常都是一些弱算法,而这些弱算法都不具备只保留白噪声的能力;其次,Boosting有可能导致过度拟合,所以我们必须在合适的点上停止这个算法。
试着想象一个分类问题请看下图:
从最左侧的图开始看,那条垂直的线表示我们运用算法所构建的分类器,可以发现在这幅图中有3/10的观测值的分类情况是错误的。接着,我们给予那三个被误分的“+”型的观测值更高的权重,使得它们在构建分类器时的地位非常重要。这样一来,垂直线就直接移动到了接近图形右边界的位置。反复这样的过程之后,我们在通过合适的权重组合将所有的模型进行合并。
算法的理论基础我们该如何分配观测值的权重呢?
通常来说,我们从一个均匀分布假设出发,我们把它称为D1,在这里,n个观测值分别被分配了1/n的权重。
步骤1:假设一个α(t);
步骤2:得到弱分类器h(t);
步骤3:更新总体分布,
其中,
步骤4:再次运用新的总体分布去得到下一个分类器;
觉得步骤3中的数学很可粗袜怕吗?让我们来一起击破这种恐惧。首先,我们简单看一下指数里的参数,α表示一种学习率,y是实际的回应值(+1或-1),而h(x)则是分类器所预测的类别。简单来说,如果分类器预测错了,这个指数的幂就变成了1 *α, 反之则是-1*α。也就是说,如果某观测值在上一次预测中被预测错误,那么它对应的权重可能会增加。那么,接下来该做什么呢?
步骤5:不断重复步骤1-步骤4,直到无法发现任何可以改进的地方;
步骤6:对所有在上面步骤中出现过的分类器或是学习算法进行加权平均,权重如下所示:
案例练习
最近我参加了由Analytics Vidhya组织的在线hackathon活动。为了使变量变换变得容易,在complete_data中我们合并了测试集与训练集中的所有数据。我们将数据导入,并且进行抽样和分类。
library(caret)rm(list=ls())setwd("C:Usersts93856DesktopAV")library(Metrics)complete <- read.csv("complete_data.csv", stringsAsFactors = TRUE)train <- complete[complete$Train == 1,]score <- complete[complete$Train != 1,]set.seed(999)ind <- sample(2, nrow(train), replace=T, prob=c(0.60,0.40))trainData<-train[ind==1,]testData <- train[ind==2,]set.seed(999)ind1 <- sample(2, nrow(testData), replace=T, prob=c(0.50,0.50))trainData_ens1<-testData[ind1==1,]testData_ens1 <- testData[ind1==2,]table(testData_ens1$Disbursed)[2]/nrow(testData_ens1)#Response Rate of 9.052%
接下来,就是构建一个梯度推进模型(Gradient Boosting Model)所要做的:
fitControl <- trainControl(method = "repeatedcv", number = 4, repeats = 4)trainData$outcome1 <- ifelse(trainData$Disbursed == 1, "Yes","No")set.seed(33)gbmFit1 <- train(as.factor(outcome1) ~ ., data = trainData[,-26], method = "gbm", trControl = fitControl,verbose = FALSE)gbm_dev <- predict(gbmFit1, trainData,type= "prob")[,2]gbm_ITV1 <- predict(gbmFit1, trainData_ens1,type= "prob")[,2]gbm_ITV2 <- predict(gbmFit1, testData_ens1,type= "prob")[,2]auc(trainData$Disbursed,gbm_dev)auc(trainData_ens1$Disbursed,gbm_ITV1)auc(testData_ens1$Disbursed,gbm_ITV2)
在上述案例中,运行代码后所看到的所有AUC值将会非常接近0.84。我们随时欢迎你对这段代码进行进一步的完善。在这个领域,梯度推进模型(GBM)是最为广泛运用的方法,在未来的文章里,我们可能会对GXBoost等一些更加快捷的Boosting算法进行介绍。
结束语笔者曾不止一次见识过Boosting算法的迅捷与高效,在Kaggle或是其他平台的竞赛中,它的得分能力从未令人失望,当然了,也许这要取决于你能够把特征工程(feature engineering)做得多好了。
以上是小编为大家分享的关于基于R语言的梯度推进算法介绍的相关内容,更多信息可以关注环球青藤分享更多干货
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)