原文链接:http://tecdat.cn/?p=20015
本文将说明单变量和多变量金融时间序列的不同模型,特别是条件均值和条件协方差矩阵、波动率的模型。
均值模型
本节探讨条件均值模型。
iid模型
我们从简单的iid模型开始。iid模型假定对数收益率xt为N维高斯时间序列:
均值和协方差矩阵的样本估计量分别是样本均值
和样本协方差矩阵
我们从生成数据开始,熟悉该过程并确保估计过程给出正确的结果(即完整性检查)。然后使用真实的市场数据并拟合不同的模型。
让我们生成合则卖成iid数据并估算均值和协方差矩阵:
# 生成综合收益数据X <- rmvnorm(n = T, mean = mu, sigma = Sigma)# 样凯没本估计(样本均值和样本协方差矩阵)mu_sm <- colMeans(X)Sigma_scm <- cov(X)# 误差norm(mu_sm - mu, "2")#>[1] 2.44norm(Sigma_scm - Sigma, "F")#>[1] 70.79
现在,让我们针对不同数量的观测值T再做一次:
# 首先生成所有数据X <- rmvnorm(n = T_max, mean = mu, sigma = Sigma)# 现在遍历样本的子集for (T_ in T_sweep) { # 样本估算 mu_sm <- colMeans(X_) Sigma_scm <- cov(X_) # 计算误差 error_mu_vs_T <- c(error_mu_vs_T, norm(mu_sm - mu, "2")) error_Sigma_vs_T <- c(error_Sigma_vs_T, norm(Sigma_scm - Sigma, "F"))# 绘图plot(T_sweep, error_mu_vs_T, main = "mu估计误差",
plot(T_sweep, error_Sigma_vs_T main = "Sigma估计中的误差", ylab = "误差"
单变量ARMA模型
对数收益率xt上的ARMA(p,q)模型是
其中wt是均值为零且方差为σ2的白噪声序列。模型的参数是系数ϕi,θi和噪声方差σ2。
请注意,ARIMA(p,d,q)模型是时间差分为d阶的ARMA(p,q)模型。因此,如果我们用xt代替对数价格,那么先前的对数收益模型实际上就是ARIMA(p,1,q)模型,因为一旦对数价格差分,我们就获得对数收益。
rugarch生成数据
我们将使用rugarch包 生成单变量ARMA数据,估计参数并进行预测。
首先,我们需要定义模型:
# 指定具有给定系数和参数的AR(1)模型#>#>*----------------------------------*#>* ARFIMA Model Spec *#>*----------------------------------*#>Conditional Mean Dynamics#>------------------------------------#>Mean Model : ARFIMA(1,0,0)#>盯盯纳 Include Mean : TRUE #>#>Conditional Distribution#>------------------------------------#>Distribution : norm #>Includes Skew : FALSE #>Includes Shape : FALSE #>Includes Lambda : FALSE#> Level Fixed Include Estimate LB UB#>mu 0.01 1 1 0 NA NA#>ar1 -0.90 1 1 0 NA NA#>ma 0.00 0 0 0 NA NA#>arfima 0.00 0 0 0 NA NA#>archm 0.00 0 0 0 NA NA#>mxreg 0.00 0 0 0 NA NA#>sigma 0.20 1 1 0 NA NA#>alpha 0.00 0 0 0 NA NA#>beta 0.00 0 0 0 NA NA#>gamma 0.00 0 0 0 NA NA#>eta1 0.00 0 0 0 NA NA#>eta2 0.00 0 0 0 NA NA#>delta 0.00 0 0 0 NA NA#>lambda 0.00 0 0 0 NA NA#>vxreg 0.00 0 0 0 NA NA#>skew 0.00 0 0 0 NA NA#>shape 0.00 0 0 0 NA NA#>ghlambda 0.00 0 0 0 NA NA#>xi 0.00 0 0 0 NA NAfixed.pars#>$mu#>[1] 0.01#>#>$ar1#>[1] -0.9#>#>$sigma#>[1] 0.2true_params#> mu ar1 sigma #> 0.01 -0.90 0.20
然后,我们可以生成时间序列:
# 模拟一条路径apath(spec, n.sim = T)# 转换为xts并绘图plot(synth_log_returns, main = "ARMA模型的对数收益率"plot(synth_log_prices, main = "ARMA模型的对数价格"
ARMA模型
现在,我们可以估计参数(我们已经知道):
# 指定AR(1)模型arfimaspec(mean.model = list(armaOrder = c(1,0), include.mean = TRUE))# 估计模型#> mu ar1 sigma #> 0.0083 -0.8887 0.1987#> mu ar1 sigma #> 0.01 -0.90 0.20
我们还可以研究样本数量T对参数估计误差的影响:
# 循环for (T_ in T_sweep) { estim_coeffs_vs_T <- rbind(estim_coeffs_vs_T, coef(arma_fit)) error_coeffs_vs_T <- rbind(error_coeffs_vs_T, abs(coef(arma_fit) - true_params)/true_params)# 绘图matplot(T_sweep, estim_coeffs_vs_T, main = "估计的ARMA系数", xlab = "T", ylab = "值",
matplot(T_sweep, 100*error_coeffs_vs_T, main = "估计ARMA系数的相对误差", xlab = "T", ylab = "误差 (%)",
首先,真正的μ几乎为零,因此相对误差可能显得不稳定。在T = 800个样本之后,其他系数得到了很好的估计。
ARMA预测
为了进行健全性检查,我们现在将比较两个程序包 Forecast 和 rugarch的结果:
# 指定具有给定系数和参数的AR(1)模型spec(mean.model = list(armaOrder = c(1,0), include.mean = TRUE), fixed.pars = list(mu = 0.005, ar1 = -0.9, sigma = 0.1))# 生成长度为1000的序列arfima(arma_fixed_spec, n.sim = 1000)@path$seriesSim# 使用 rugarch包指定和拟合模型spec(mean.model = list(armaOrder = c(1,0), include.mean = TRUE))# 使用包“ forecast”拟合模型#>ARIMA(1,0,0) with non-zero mean #>#>Coefficients:#> ar1 mean#> -0.8982 0.0036#>s.e. 0.0139 0.0017#>#>sigma^2 estimated as 0.01004: log likelihood=881.6#>AIC=-1757.2 AICc=-1757.17 BIC=-1742.47# 比较模型系数#> ar1 intercept sigma #>-0.898181148 0.003574781 0.100222964#> mu ar1 sigma #> 0.003605805 -0.898750138 0.100199956
确实,这两个软件包给出了相同的结果。
ARMA模型选择
在先前的实验中,我们假设我们知道ARMA模型的阶数,即p = 1和q = 0。实际上,阶数是未知的,因此必须尝试不同的阶数组合。阶数越高,拟合越好,但这将不可避免地导致过度拟合。已经开发出许多方法来惩罚复杂性的增加以避免过度拟合,例如AIC,BIC,SIC,HQIC等。
# 尝试不同的组合# 查看排名#> AR MA Mean ARFIMA BIC converged#>1 1 0 1 0 -0.38249098 1#>2 1 1 1 0 -0.37883157 1#>3 2 0 1 0 -0.37736340 1#>4 1 2 1 0 -0.37503980 1#>5 2 1 1 0 -0.37459177 1#>6 3 0 1 0 -0.37164609 1#>7 1 3 1 0 -0.37143480 1#>8 2 2 1 0 -0.37107841 1#>9 3 1 1 0 -0.36795491 1#>10 2 3 1 0 -0.36732669 1#>11 3 2 1 0 -0.36379209 1#>12 3 3 1 0 -0.36058264 1#>13 0 3 1 0 -0.11875575 1#>14 0 2 1 0 0.02957266 1#>15 0 1 1 0 0.39326050 1#>16 0 0 1 0 1.17294875 1#选最好的armaOrder#>AR MA #> 1 0
在这种情况下,由于观察次数T = 1000足够大,因此阶数被正确地检测到。相反,如果尝试使用T = 200,则检测到的阶数为p = 1,q = 3。
ARMA预测
一旦估计了ARMA模型参数ϕi ^ i和θ^j,就可以使用该模型预测未来的值。例如,根据过去的信息对xt的预测是
并且预测误差将为xt-x ^ t = wt(假设参数已被估计),其方差为σ2。软件包 rugarch 使对样本外数据的预测变得简单:
# 估计模型(不包括样本外)coef(arma_fit)#> mu ar1 sigma #> 0.007212069 -0.898745183 0.200400119# 整个样本外的预测对数收益forecast_log_returns <- xts(arma_fore@forecast$seriesFor[1, ], dates_out_of_sample)# 恢复对数价格prev_log_price <- head(tail(synth_log_prices, out_of_sample+1), out_of_sample)# 对数收益图plot(cbind("fitted" = fitted(arma_fit),# 对数价格图plot(cbind("forecast" = forecast_log_prices, main = "对数价格预测", legend.loc = "topleft")
多元VARMA模型
对数收益率xt上的VARMA(p,q)模型是
其中wt是具有零均值和协方差矩阵Σw的白噪声序列。该模型的参数是矢量/矩阵系数ϕ0,Φi,Θj和噪声协方差矩阵Σw。
比较
让我们首先加载S&P500:
# 加载标普500数据head(SP500_index_prices)#> SP500#>2012-01-03 1277.06#>2012-01-04 1277.30#>2012-01-05 1281.06#>2012-01-06 1277.81#>2012-01-09 1280.70#>2012-01-10 1292.08# 准备训练和测试数据logreturns_trn <- logreturns[1:T_trn]logreturns_tst <- logreturns[-c(1:T_trn)]# 绘图{ plot(logreturns, addEventLines(xts("训练"
现在,我们使用训练数据(即,对于t = 1,…,Ttrnt = 1,…,Ttrn)来拟合不同的模型(请注意,通过指示排除了样本外数据 out.sample = T_tst)。特别是,我们将考虑iid模型,AR模型,ARMA模型以及一些ARCH和GARCH模型(稍后将对方差建模进行更详细的研究)。
# 拟合i.i.d.模型coef(iid_fit)#> mu sigma #>0.0005712982 0.0073516993mean(logreturns_trn)#>[1] 0.0005681388sd(logreturns_trn)#>[1] 0.007360208# 拟合AR(1)模型coef(ar_fit)#> mu ar1 sigma #> 0.0005678014 -0.0220185181 0.0073532716# 拟合ARMA(2,2)模型coef(arma_fit)#> mu ar1 ar2 ma1 ma2 sigma #> 0.0007223304 0.0268612636 0.9095552008 -0.0832923604 -0.9328475211 0.0072573570# 拟合ARMA(1,1)+ ARCH(1)模型coef(arch_fit)#> mu ar1 ma1 omega alpha1 #> 6.321441e-04 8.720929e-02 -9.391019e-02 4.898885e-05 9.986975e-02#拟合ARMA(0,0)+ARCH(10)模型coef(long_arch_fit)#> mu omega alpha1 alpha2 alpha3 alpha4 alpha5 #>7.490786e-04 2.452099e-05 6.888561e-02 7.207551e-02 1.419938e-01 1.909541e-02 3.082806e-02 #> alpha6 alpha7 alpha8 alpha9 alpha10 #>4.026539e-02 3.050040e-07 9.260183e-02 1.150128e-01 1.068426e-06# 拟合ARMA(1,1)+GARCH(1,1)模型coef(garch_fit)#> mu ar1 ma1 omega alpha1 beta1 #> 6.660346e-04 9.664597e-01 -1.000000e+00 7.066506e-06 1.257786e-01 7.470725e-01
我也刚做过,不知道是和你的一样不。仿真模型输出数据Y直接在matlab里编程
z=iddata(Y)
armax(z,'na',na,'nc',nc)
就这两条语句就ok,其唯闷中na,nc是你自己需要的阶次,自己输入。比如,我想要阶次为10,就袭困写成armax(z,'na',10,'nc',10)
希望能帮到你指禅弯!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)