2.2用高副低代方法设计平面凸轮的基本原理据高副低代理论,平面机构中的高副可用含有2个低副的虚拟构件代替,低副中心位于运动副元素的曲率中心处,代换前后,机构自由度及瞬时运动不变。将凸轮与从动件瞬时接触点M处的高副用带2个低副的杆件代替,代换后,平面连杆机构主、从动件的瞬时运动特性分别和凸轮及凸轮从动件完全一致,该瞬时平面连杆机构的压力角即凸轮机构的压力角。对于滚子从动件盘形凸轮机构和移动凸轮机构,虚拟杆为带两个转动副的连杆AB,转动副的中心分别位于凸轮廓线上点M处的曲率中心A和滚子中心B处,点A到点B间的长度lAB即凸轮理论廓线上点B处曲率半径,点A、M间长度即凸轮实际廓线上点M处曲率半径。对于平底从动件盘形凸轮机构,虚拟杆为带一转动副的滑块,转动副的中心位于凸轮廓线上点M处的曲率中心A处,导路垂直于点M的运动方向。对代换后的平面连杆机构建立位移、速度、加速度的矢量方程式,可求得虚拟连杆长和方向,进而得出凸轮廓线方程、曲率半径和压力角表达式。2.3盘形凸轮的设计盘形凸轮是最常用的凸轮,设计时,首先初步拟定凸轮轮廓基圆半径、滚子半径、许用压力角和许用曲率半径以及必须的尺寸参数,再根据机构工作要求选定凸轮转速、从动件运动规律和升程h、推程运动角、回程运动角、远休止角、近休止角。据设计的从动件运动规律,求取直动从动件位移、速度、加速度或摆动从动件角位移、角速度、角加速度,再据此分析代换机构中虚拟杆的杆长和方向,求取凸轮实际廓线坐标,并检验压力角和实际曲率半径,若不满足,调整相应的参数。考虑到圆向量函数[8]直观性强,可避免公式推导中不必要的展开,采用圆向量函数表达矢量,矢量用单位向量或与模的乘积表示,表示与x轴之间有向角为的单位向量,表示与x轴之间有向角为的单位向量,自x轴正向度量,逆时针为正,顺时针度量为负。圆向量的计算法则详见附录I。以凸轮回转中心O为原点建立直角坐标系Oxy,x、y轴单位向量分别为i、j。图2.1中用粗实线表示凸轮转过任意角时,高副低代所得平面连杆机构。机构中各构件的转角、角速度、角加速度逆时针取正、顺时针取负。2.3.1滚子直动从动件盘形凸轮机构中的凸轮设计偏置滚子直动从动件盘型凸轮机构,从动件导路偏距为w(导路在x轴左侧w为正,反之为负),升程h,从动滚子中心初始位置处于B0点,当凸轮转过角后,如图2.1所示,从动滚子中心处于B点。凸轮机构高副低代后得到曲柄滑块机构OAB,滑块上B点位移、速度、加速度矢量方程分别为(2-7)式中图2.1滚子直动从动件盘形凸轮机构的高副低代(2-8) (2-9)由式(2-7)(2-8)(2-9)得: (2-10)当时, ;当时,,(2-11)AB杆的方向亦即从动件受力方向,从动件运动沿y轴方向,凸轮机构压力角为 (2-12)点M处曲率半径为即 (2-13)从动滚子与凸轮轮廓接触点M的向径为,将该向径反方向旋转角,得凸轮处于初始位置时点M的向径: (2-14)
式(2-14)分别点乘,得凸轮实际廓线的直角坐标方程 (2-15)机床加工凸轮时,常采用铣刀、砂轮等圆形刀具。给定刀具半径,刀具与凸轮廓点M接触时,刀具中心Q必在代换机构的虚拟连杆方向,与点M相距。用代换式(2-15)中的,得圆形刀具中心轨迹曲线直角坐标方程 (2-16)取时,式(2-15)即对心式直动从动件盘形凸轮机构凸轮廓线直角坐标方程;取时,式(2-15)即尖底直动从动件盘形凸轮机构的实际凸轮廓线方程,亦可看作滚子直动从动件盘形凸轮机构的理论凸轮廓线方程。2.3.2滚子摆动从动件盘形凸轮机构中的凸轮设计图2.2所示滚子摆动从动件盘形凸轮机构,摆杆摆动中心C,杆长为l,机架OC长为b,从动件处于起始位置时,滚子中心处于B0点,摆杆与机架OC之间的夹角为,当凸轮转过角后,从动件摆过角,滚子中心处于B点。凸轮机构高副低代后得到平面连杆机构OABC,从动杆BC上B点位移、速度、加速度矢量式为 (2-17)图2.2滚子摆动从动件盘形凸轮机构的高副低代 (2-18)(2-19)式(2-17)中。在文献[10]中,从动件的角速度、角加速度在回程时为负,推程时为正,而此处逆时针为正,顺时针为负,所以引用公式时,须添加负号。由式(2-17)(2-18)(2-19)得 (2-20)当时,;当时,, (2-21)AB杆的方向即从动件受力方向,从动件运动方向垂直于CB杆,凸轮机构压力角为 (2-22)点M处曲率半径为即 (2-23)凸轮实际廓线上点M的向径为。将该向径反方向旋转角,得凸轮处于初始位置时点M的向径 (2-24)式(2-24)分别点乘,得凸轮实际廓线的直角坐标方程 (2-25)用代换式(2-25)中的,得圆形刀具中心轨迹曲线直角坐标方程 (2-26)当取时,式(2-25)即尖底摆动从动件盘形凸轮机构的实际凸轮廓线方程,亦可看作滚子摆动从动件盘形凸轮机构的理论凸轮廓线方程。2.3.3平底直动从动件盘形凸轮机构中的凸轮设计图2.3平底直动从动件盘形凸轮机构的高副低代平底从动件盘形凸轮机构高副元素的曲率中心分别位于凸轮廓该点曲率中心A和垂直于平底的无穷远处,高副可用导路平行于平底的滑块A表示。图2.3所示偏置平底直动从动件盘形凸轮机构,导路偏距e,平底中心初始位置处于B0点,当凸轮转过角后,平底中心处于B点,。列从动件位移、速度、加速度矢量方程式 (2-27) (2-28) (2-29)矢量式(2-27)(2-28)(2-29)中有六个未知量,可求,求得 。点M处曲率半径 ,即 (2-30)平底与凸轮廓线接触点M的向径为。将该向径反方向旋转角,得凸轮处于初始位置时点M的向径 (2-31)
式(2-31)分别点乘,得凸轮实际廓线的直角坐标方程 (2-32)刀具与凸轮廓点M接触时,刀具中心Q必在AM方向,与点M相距。用代换式(2-32)中的,得圆形刀具中心轨迹曲线直角坐标方程 (2-33)显然,平底直动从动件盘形凸轮机构中的凸轮轮廓与偏心距大小无关。当平底垂直于从动件导路时,压力角为 (2-34)2.3.4平底摆动从动件盘形凸轮机构中的凸轮设计图2.4所示平底摆动从动件盘形凸轮机构,机架OC长为b,摆杆在虚线所示初始位置与机架OC之间的夹角为,当凸轮转过角后,平底转到CM处。此时代换机构从动件角位移、角速度、角加速度矢量方程式为 (2-35) (2-36)(2-37) 图2.4平底摆动从动件盘形凸轮机构的设计式(2-36)、(2-37)中。矢量式(2-35)(2-36)(2-37)中共有六个未知量, 可求,因推导需要一些技巧,此处给出较为详细的推导过程。将式(2-36)中各矢量旋转,得 (2-38)将式(2-35)(2-38)等号两边矢量两两相减,得 (2-39)将式(2-39)等号两边同时点乘,得。因,可得 (2-40)将式(2-37)(2-38)等号两边矢量两两相加,得 (2-41)由式(2-39)和 (2-41)可得 (2-42)将式(2-42)等号两边同时点乘,得,则 (2-43)将式(2-43)带入式(2-39)中,得 (2-44)点M处曲率半径即MA的长度,即 (2-45)从动摆杆上M点的受力方向衡与速度方向一致,压力角为 (2-46)平底与凸轮廓线接触点M的向径为。 将该向径反方向旋转角,得凸轮处于初始位置时点M的向径: (2-47)式(2-47)分别点乘后求得凸轮实际廓线的直角坐标方程 (2-48)刀具与凸轮廓点M接触时,刀具中心Q必在AM方向,与点M相距,其向径为 (2-49)直角坐标方程为 (2-50)2.4圆柱/移动凸轮机构中的凸轮设计圆柱凸轮属空间凸轮机构,其轮廓曲线为一条空间曲线,不能直接在平面上表示。但在低速轻载的工作条件下,可以将圆柱面展开成平面,圆柱凸轮便成为平面移动凸轮,可以运用高副低代的方法对其进行设计。2.4.1直动推杆圆柱/移动凸轮机构中的凸轮设计图2.5a为直动推杆移动凸轮机构运动示意图,也可看作将圆柱凸轮展开后,得到的机构运动示意图,滚子中心B,滚子中心与凸轮廓线接触点处的曲率中心为A。图2.5b表示高副低代后得到的平面连杆机构,设圆柱凸轮半径为R,速度,以滚子最低点o为圆心,以直动推杆升程方向为y轴,建立坐标系xoy,建立代换机构的速度、加速度矢量方程
(2-51) (2-52)变换式(2-51)为 (2-53)图2.5a 图2.5b图2.5直动推杆圆柱/移动凸轮的高副低代将式(2-53)等号两边分别点乘 ,并将所得二式等号两边分别相除,得 (2-54)当时,当时,AB杆的方向亦即从动件受力方向,从动件运动沿方向y轴方向,凸轮机构压力角为 (2-55)由式(2-51)和(2-52),可求得 (2-56)点M处曲率半径为 (2-57)从动滚子与凸轮轮廓接触点M的向径为 (2-58)将该接触点M沿凸轮平动方向的反向移动,得凸轮处于初始状态时点M的位置,此时向径 (2-59)将式(2-59)分别点乘,得凸轮实际廓线的直角坐标方程 (2-60)式(2-58)(2-59)(2-60)中“+”表示凸轮轮廓线上部,“-”表示凸轮轮廓线下部。2.4.2摆动推杆圆柱/移动凸轮机构中的凸轮设计图2.6a为摆动推杆移动凸轮机构运动示意,也可看作将摆动推杆圆柱凸轮机构中凸轮展开后,得到的机构运动示意图,滚子中心B,滚子中心与凸轮廓线接触点处的曲率中心为A。图2.6 b表示高副低代后得到的平面连杆机构,设圆柱凸轮半径为R,速度,摆秆的任一瞬时摆角,最大摆角为,摆角速度为摆秆的回转中心o通常在摆动幅角的等分线上,以o为圆心,以凸轮移动方向为x轴,建立坐标系xoy,列代换机构的速度、加速度矢量方程图2.6摆动推杆圆柱/移动凸轮机构的高副低代 (2-61) (2-62)式中。将式(2-61)中各矢量旋转后化为 (2-63)将式(2-63)等号两边分别点乘 ,并将所得二式等号两边分别相除,得 (2-64)当时, 当时,AB杆的方向亦即从动件受力方向,从动件运动沿方向y轴方向,凸轮机构压力角为 (2-65)由(2-62)(2-63)联列可求得(2-66)
接触点M处曲率半径为 (2-67)从动滚子与凸轮轮廓接触点M的向径为 (2-68)将该向径沿展开凸轮平动方向的反向运动距离,即得凸轮处于初始位置时点M的向径 (2-69)将式(2-67)分别点乘,得凸轮实际廓线的直角坐标方程 (2-70)式(2-68)(2-69)(2-70)中“+”对应着凸轮廓线上部,“-” 对应着凸轮廓线下部。
凸轮机构(cam mechanism)一般是由凸轮、从动件(follower)和机架三个构件组成的高副机构。凸轮通常作连续等速转动,从动件根据使用要求设计使它获得一定规律的运动.凸轮机构能实现复杂的运动要求,广泛用于各种自动化和半自动化机械装置中。
凸轮机构通常由两部份动件组成,即凸轮与从动子(follower),两者均固定于座架上。凸轮装置是相当多变化的,故几乎所有任意动作均可经由此一机构产生。
凸轮可以定义为一个具有曲面或曲槽之机件,利用其摆动或回转,可以使另一组件—从动子宽销晌提供预先设定的运动。从动子之路径大部限斗改制在一个滑槽内,以获得往覆运动。
在其回复的行程中,有时依靠其本身之重量,但有些机构为获得确切的动作,常以d簧作为回复之力,有些则利用导槽,使其慎锋在特定的路径上运动。
扩展资料:
1、作用
凸轮机构主要作用是使从动杆按照工作要求完成各种复杂的运动,包括直线运动、摆动、等速运动和不等速运动。
2、用途应用
①气阀杆的运动规律规定了凸轮的轮廓外形。当矢径变化的凸轮轮廓与气阀杆的平底接触时,气阀杆产生往复运动;而当以凸轮回转中心为圆心的圆弧段轮廓与气阀杆接触时,气阀杆将静止不动。因此,随着凸轮的连续转动,气阀杆可获得间歇的、按预期规律的运动。
②当圆柱凸轮回转时,凹槽侧面迫使摆动从动件摆动,从而驱使与之相连的刀架运动。至于刀架的运动规律则完全取决于凹槽的形状。
3、凸轮机构的优点
只需设计适当的凸轮轮廓,便可使从动件得到任意的预期运动,而且结构简单、紧凑、设计方便,因此在自动机床、轻工机械、纺织机械、印刷机械、食品机械、包装机械和机电一体化产品中得到广泛应用。
4、凸轮机构的缺点
① 凸轮与从动件间为点或线接触,易磨损,只宜用于传力不大的场合;
② 凸轮轮廓精度要求较高,需用数控机床进行加工;
③从动件的行程不能过大,否则会使凸轮变得笨重。
参考资料来源:百度百科-凸轮
1、根据要求,确定从动件的移动距离,比如20mm、30mm等2、根据径向载(如:抗弯强度、抗剪强度)荷确定凸轮轴的最小轴径
3、根据结构定出凸轮的近毂半径(凸轮的最低点半径)
4、由时间需要,在恰当的转角时间,再按照从动件移动的距离来确定凸轮的远毂半径(凸轮最高点的半径)
5、从“凸轮的最低点半径”到“凸轮最高点的半径”为从动件升程
6、从“凸轮最高点的半径”到“凸轮的最低点半径”为从动件回程
7、“升程”与“回程”都属于从动件的过渡阶段,它决定从动件的加速度(或减速度)升速过快,会产生较大的径向负荷,为了减小凸轮的径向负荷,只有减慢升速,也就是将凸轮升程部分做得稍微平滑一些
8、根据以上:凸轮的“升程”或“回程”部分的曲线可以用阿基米德螺线,但需要描点确定阿基米德螺线的,制造也比较麻烦一下,但运动效果最好。简单的可以用圆弧代替凸轮的“升程”和“回程”,这样的用圆弧代替凸轮曲线所做出来的凸轮,其运动没有阿基米德螺线做的凸轮好,但可以用
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)