原发布者:sf19801122
椭圆的标准方程高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程中的“标准”指的是中心在原点,对称轴为坐标轴。椭圆的标准方程有两种,取决于焦点所在的坐标轴: F点在X轴1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1(a>b>0)2)焦点在Y轴时,标准方程为:y^2/a^2+x^2/b^2=1(a>b>0)其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2(a^2-b^2)^05,焦距与长短半轴的关系:b^2=a^2-c^2,准线方程是x=a^2/c和x=-a^2/c,c为椭圆的半焦距。又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。即 F点在Y轴标准方程的统一形式。椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ,y=bsinθ标准形式的椭圆在(x0,y0)点的切线就是:xx0/a^2+yy0/b^2=1椭圆的一般方程Ax^2+By^2=C(A>0,B>0,且A≠B)。椭圆的参数方程x=acosθ,y=bsinθ。椭圆的极坐标方程(一个焦点在极坐标系原点,另一个在θ=0的正方向上)r=a(1-e^2)/(1-ecosθ)(e为椭圆的离心率)
若椭圆的方程为 ,点P
在椭圆上,则过点P椭圆的切线方程为
证明:椭圆为 ,切点为 ,则
对椭圆求导得 , 即切线斜率
,
故切线方程是
代入并化简得切线方程为 。
扩展资料:
切线方程是研究切线以及切线的斜率方程,涉及几何、代数、物理向量、量子力学等内容。是关于几何图形的切线坐标向量关系的研究。分析方法有向量法和解析法。
定义
切线方程是研究切线以及切线的斜率方程。
椭圆是平面上到两定点的距离之和为常值的点之轨迹, 也可定义为到定点距离与到定直线间距离之比为一个小于1的常值的点之轨迹。它是圆锥曲线的一种,即圆锥与平面的截线。 椭圆在方程上可以写为:x^2/a^2+y^2/b^2=1,它还有其他一些表达形式,如参数方程表示等等。椭圆在开普勒行星运行三定律中扮演了重要角色,即行星轨道是椭圆,以恒星为焦点。
设椭圆方程是x^2/a^2+y^2/b^2=1
两边对x求导有
2x/a^2+2yy'/b^2=0
y'=-xb^2/(a^2y)
因为求导表示的是切线斜率
简单来说,假设某点(x0,y0)在椭圆上
那么过这点的椭圆切线斜率为k=-x0b^2/(y0a^2)
过这点的切线方程是:
y-y0=-x0b^2/(y0a^2)(x-x0)
整理得
xx0b^2+yy0a^2=y0^2a^2+x0^2b^2=a^2b^2
即 过点(x0,y0)的切线方程是
xx0/a^2+yy0/b^2=1
希望可以帮到你,谢谢,望采纳。1焦距=6,即c=3。长轴(2a)与短轴(2b)和=18。列出方程:2a+2b=18
;a²-b²=c²=9。
联立方程组,解得a=5,b=4。所以,椭圆的方程为x²/25+y²/16=1。
2已知焦点坐标,即c=根号3。又因为点过(2,1)。所以,列出方程:2²/a²+1²/b²=1;a²-b²=c²=3
联立方程组,解得a=2,b=1。所以,椭圆的方程为x²/4+y²/1=1。椭圆法线方程
俄想要的_伱给不起20-10-01举报分享
好评回答

椭圆法线方程是Y-y=-1/y’(X-x),椭圆(Ellipse)是平面内到定点F1和F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹。
椭圆是圆锥曲线的一种,即圆锥与平面的截线。椭圆的周长等于特定的正弦曲线在一个周期内的长度。抛物线和双曲线都是开放的和无界的。椭圆在物理,天文和工程方面很常见。
椭圆的参数方程x=acosθ,y=bsinθ。
(一个焦点在极坐标系原点,另一个在θ=0的正方向上)
r=a(1-e^2)/(1-ecosθ)
(e为椭圆的离心率=c/a)
求解椭圆上点到定点或到定直线距离的最值时,用参数坐标可将问题转化为三角函数问题求解
x=a×cosβ, y=b×sinβ a为长轴长的一半
相关性质
由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥曲线(也称圆锥截线)。
例如:有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义):
将两个半径与圆柱半径相等的半球从圆柱两端向中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。
设两点为F1、F2
对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2
则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2
由定义1知:截面是一个椭圆,且以F1、F2为焦点
用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆
例:已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为√6/3,短轴一个端点到右焦点的距离为√3
1求椭圆C的方程
2直线l:y=x+1与椭圆交于A,B两点,P为椭圆上一点,求△PAB面积的最大值
3在⑵的基础上求△AOB的面积
一、分析短轴的端点到左右焦点的距离和为2a,端点到左右焦点的距离相等(椭圆的定义),可知a=√3,又c/a=√6/3,代入得c=√2,b=√(a^2-c^2)=1,方程是x^2/3+y^2/1=1,
二、要求面积,显然以ab作为三角形的底边,联立x^2/3+y^2/1=1,y=x+1解得x1=0,y1=1,x2=-15,y2=-05利用弦长公式有√(1+k^2))[x2-x1](中括号表示绝对值)弦长=3√2/2,对于p点面积最大,它到弦的距离应最大,假设已经找到p到弦的距离最大。
过p做弦的平行线,可以 发现这个平行线是椭圆的切线是才会最大,这个切线和弦平行故斜率和弦的斜率=,设y=x+m,利用判别式等于0,求得m=2,-2结合图形m=-2x=15,y=-05,p(15,-05)。
三、直线方程x-y+1=0,利用点到直线的距离公式求得√2/2,面积1/2√2/23√2/2=3/4。
扩展资料
1、范围:焦点在x轴上-a≤x≤a -b≤y≤b;焦点在y轴上-b≤x≤-b -a≤y≤a
2、对称性:关于X轴对称,Y轴对称,关于原点中心对称。
3、顶点:(a,0)(-a,0)(0,b)(0,-b)
4、离心率:e=c/a
5、离心率范围 0<e<1
6、离心率越大椭圆就越扁,越小则越接近于圆
7焦点 (当中心为原点时)(-c,0),(c,0)
参考资料:
椭圆的标准方程共分两种情况:
当焦点在x轴时,椭圆的标准方程是:x²/a²+y²/b²=1,(ab0)。
当焦点在y轴时,椭圆的标准方程是:y²/a²+x²/b²=1,(ab0)。
其中a²-c²=b²,推导:PF1+PF2F1F2(P为椭圆上的点F为焦点)。
不论焦点在X轴还是Y轴,椭圆始终关于X/Y/原点对称。
相关信息:
1、如果在一个平面内一个动点到两个定点的距离的和等于定长,那么这个动点的轨迹叫做椭圆。
2、椭圆的图像如果在直角坐标系中表示,那么上述定义中两个定点被定义在了x轴。若将两个定点改在y轴,可以用相同方法求出另一个椭圆的标准方程。
3、在方程中,所设的称为长轴长,称为短轴长,而所设的定点称为焦点,那么称为焦距。在假设的过程中,假设了,如果不这样假设,会发现得不到椭圆。当时,这个动点的轨迹是一个线段;当时,根本得不到实际存在的轨迹,而这时,其轨迹称为虚椭圆。
这是中点弦问题,你先设出椭圆标准方程,再设出PQ的坐标,分别带入方程,做差,化简,你会得到一个与中点和直线斜率的式子,把中点与斜率带入关系式,你会得到一个关于a,b的关系,然后再由c等于2,再得到一个关于a,b的关系式,最后联立,得到a,b的值。 你做差后会有一个平方差公式样子的式子,你把它展开移项,X归一边,Y归一边,弄成比列式的。你会看到的,我是用手机回答的,具体的式子不好打出来,你自己按照我的说法试试,会有结果的,这样你会记得更牢! 做差就是PQ点带入椭圆方程后的两个式子进行做差。 中点不是二分之X1+X2,二分之Y1+Y2,斜率(Y1-Y2)/(X1-X2)嘛。这些根据题目都可以整体求出的啊。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)