矩阵的内积怎么求?

矩阵的内积怎么求?,第1张

矩阵内积参照向量的内积的定义是:两个向量对应分量乘积之和。

比如: α=(1,2,3), β=(4,5,6)

则 α, β的内积等于 14 +25 + 36 = 32

α与α 的内积 = 11+22+33 = 14

设Ann=[aij](其中1<=i,j<=n),Bnn=[bij](其中1<=i,j<=n);

矩阵A和B的内积为C1n=[∑(i=1到n求和)aijbij](其中1<=i,j<=n)。

他别注意,此时内积C1n为1行,n列的矩阵。

举例子矩阵A和B分别为:

[1 2 3]

[4 5 6]

[7 8 9]

[9 8 7]

[6 5 4]

[3 2 1]

则内积为:

[19+46+73 28+55+82 37+64+19] = [54 57 54]

扩展资料:

在mn矩阵A中,任意决定k行和k列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。

例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。

一个n×n矩阵的行列式等于其任意行(或列)的元素与对应的代数余子式乘积之和,即:

假设M是一个m×n阶矩阵,其中的元素全部属于域K,也就是实数域或复数域。如此则存在一个分解使得其中U是m×m阶酉矩阵;Σ是m×n阶实数对角矩阵;而V,即V的共轭转置,是n×n阶酉矩阵。

这样的分解就称作M的奇异值分解 。Σ对角线上的元素Σi,i即为M的奇异值。常见的做法是将奇异值由大而小排列。如此Σ便能由M唯一确定了。

向量的外积是矩阵的克罗内克积的特殊情况
给定 列向量 和 行向量 ,它们的外积 被定义为 矩阵 ,结果出自
这里的张量积就是向量的乘法
使用坐标:
对于复数向量,习惯使用 的复共轭(指示为 ),因为人们把行向量认为是对偶空间的复共轭向量空间的元素:
如果 是列向量,定义变为:
这里的 是 的共轭转置
[编辑] 相对于内积如果 是行向量,而且 m = n,则可以采用其他方式的积,生成一个标量(或 矩阵):
它是欧几里得空间的标准内积,常叫做点积
[编辑] 抽象定义给定向量 和余向量 ,张量积 给出映射 ,在同构 之下
具体的说,给定 ,
A(w):= w (w)v
这里的 w (w) 是 w 在 w 上的求值,它生成一个标量,接着乘 v
可作为替代,它是 与 的复合
如果 W = V,则还可以配对 w (v),这是内积

向量相乘分为点乘和叉乘
点乘的结果是一代数,而叉乘的结果是一向量
点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。
向量a·向量b=|a||b|cos<a,b>
在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘。
叉乘,也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。
|向量c|=|向量a×向量b|=|a||b|sin<a,b>
向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。
因此
向量的外积不遵守乘法交换率,因为
向量a×向量b=-向量b×向量a
在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘。
将向量用坐标表示(三维向量),
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),

向量a·向量b=a1a2+b1b2+c1c2
向量a×向量b=
| i j k|
|a1 b1 c1|
|a2 b2 c2|
=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)
(i、j、k分别为空间中相互垂直的三条坐标轴的单位向量)。

(1,1)内积的算法如图所示:

两个行向量的内积等于各对应分量乘积之和,内积在欧几里得几何中指两个笛卡尔坐标向量的点积常。在数学中,点积又称数量积或标量积,是一种接受两个等长的数字序列通常是坐标向量、返回单个数字的代数运算,见内积空间。

从代数角度看,先对两个数字序列中的每组对应元素求积,再对所有积求和,结果即为点积。从几何角度看,点积则是两个向量的长度与它们夹角余弦的积。这两种定义在笛卡尔坐标系中等价。点积是内积的一种特殊形式。点积有两种定义方式:代数方式和几何方式。

通过在欧氏空间中引入笛卡尔坐标系,向量之间的点积既可以由向量坐标的代数运算得出,也可以通过引入两个向量的长度和角度等几何概念来求解。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12626207.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-26
下一篇 2023-05-26

发表评论

登录后才能评论

评论列表(0条)

保存