负数+负数=负数;例:(-1)+(-2)=-3
负数+正数=①正数②负数;例:(-1)+2=1 ;(-2)+1=-1
负数—负数=①正数②负数;例:(-1)—(-2)=1;(-2)—(-1)=-1
负数—正数=负数;例:(-1)-1=2
负数都比零小,则负数都比正数小。零既不是正数,也不是负数。则-a<0<(+)a
负数中没有最小的数,也没有最大的数。
去除负数前的负号等于这个负数的绝对值。
扩展资料:
负数法则:
负数1×负数2=(负数1×负数2) =正数
负数×正数=-(正数×负数)=负数
负数1÷负数2=(负数1÷负数2) =正数
负数÷正数=-(负数÷正数) =负数
总得来说,就是同号相除等于正数,异号相除等于负数。
“正负术”是正负术加减法则。其中有一段话是“同名相除,异名相益,正无入负之,负无入正之。”其实他就是加减法则,以现代算式为例,可以将这段话解释如下:
“同名相除”,即同号两数相减时,括号前为被减数的符号,括号内为被减数的绝对值减去减数的绝对值。例如:
(+5)-(-3)=+(5+3)
(-5)-(-3)=-(5-3)
“异名相益”,即异号两数相减时,括号前为被减数的符号,括号内为被减数的绝对值加上减数的绝对值。例如:
(+5)-(-3)=+(5+3)
(-5)-(+3)=-(5+3)
“正无入负之,负无入正之”,即0减正为负,0减负得正。例如:
0-(+3)=-3
0-(-3)=+3
负数减正数计算方法:
这个要看被减数与减数的绝对值的大小问题。如果被减数大于减数,那么差还是负数,反之,差为正数。
等于加上这个正数的相反数,如-A-B=A和B加起来,再在结果上加上负号
例:-5-8=-13
负数减负数计算方法:
负负得正,把两个数加起来。如-A-(-B)=A和B相减,A大用“-”B大用“+”
例:-4-(-2)= -2
加法:
①正数加正数,和为正数;如3+5=8
②负数加负数,和为负数;如(-3)+(-5)=-8
③正、负两数相加,和取绝对值较大的符号,绝对值相减;
如(+3)+(-5)=-2 ;(-3)+(+5)=+2。
减法:
一个数减另一个数,等于一个数加另一个数的相反数,然后按上面3条进行计算。
如:
(+3)-(-5)=(+3)+(+5)然后按①方法算;
(-3)-(+5)=(- 3)+(- 5)然后按②方法算;
(+3)-(+5)=(+3)+(-5)然后按③方法算。
扩展资料:
核心是负负得正,正负得负。
乘法取个列子:6×(-5)=-30 (这里是一正一负的乘法,将数字相乘后前面加负号。)
除法取个列子:(-10)÷(-5)=2 (这里是两个负数的除法,将数字相除后前面加正号(省略正号)。)
加法取个列子:12+(-5)=12-5=7 (加上一个负的数,相当于减去这个数的正数)
减法也是一样的:(-5)-(-8)=(-5)+8=8-5=3
负数1×负数2=(负数1×负数2) =正数
负数×正数=-(正数×负数)=负数
负数1÷负数2=(负数1÷负数2) =正数
负数÷正数=-(负数÷正数) =负数
负数都比零小,则负数都比正数小。零既不是正数,也不是负数。则-a<0<(+)a
负数中没有最小的数,也没有最大的数。
去除负数前的负号等于这个负数的绝对值。
如-2、-533、-45等:-2的绝对值为2,-533的绝对值为533,-45的绝对值为45等。
分数也可做负数,如:-2/5
负数的平方根用虚数单位“i”表示。(实数范围内负数没有平方根)
最大的负整数为:-1
“正负术”是正负术加减法则。其中有一段话是“同名相除,异名相益,正无入负之,负无入正之。”其实他就是加减法则,以现代算式为例,可以将这段话解释如下:
“同名相除”,即同号两数相减时,括号前为被减数的符号,括号内为被减数的绝对值减去减数的绝对值。例如:
(+5)-(-3)=+(5+3)
(-5)-(-3)=-(5-3)
“异名相益”,即异号两数相减时,括号前为被减数的符号,括号内为被减数的绝对值加上减数的绝对值。例如:
(+5)-(-3)=+(5+3)
(-5)-(+3)=-(5+3)
“正无入负之,负无入正之”,即0减正为负,0减负得正。例如:
0-(+3)=-3
0-(-3)=+3
史料证明:追溯到两百多年前,中国人已经开始使用负数,并应用到生产和生活中。例如,在古代商业活动中,收入为正,支出为负;以盈余为正,亏欠为负在古代农业活动中,以增产为正,减产为负。中国人使用负数在世界上是首创。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)