氩弧焊除了与手工电弧焊相同的触电、烧伤、火灾以外,还有高频电磁场、电极放射线和比手弧焊强得多的弧光伤害、焊接烟尘和有毒气体等。其中最主要的是高频电和臭氧。
一 预防高频电磁场的伤害
1高频电磁场的产生及危害
在钨极氩弧焊和等离子弧焊割时,常用高频振荡器来激发引弧,有的交流氩弧焊机还用高频振荡器来稳定电弧。焊接通常使用的高频振荡器的频率为200—500千周,电压2500—3500伏,高频电流强度3—7毫安,电场强度约140—190伏/米。焊工长期接触高频电磁场能引起植物神经功能紊乱和神经衰弱。表现为全身不适、头昏、多梦、头痛、记忆力减退、疲乏无力、食欲不振、失眠及血压偏低等症状。
高频电磁场的参考卫生标准规定8小时接触的允许辐射强度为20伏/米。据测定,手工钨极氩弧焊时焊工各部位受到的高频电磁场强度均超过标准,其中以手部强度最大,超过卫生标准5倍多。如果只是引弧时使用高频振荡器,因时间短,影响较小,但长期接触也是有害的,必须采用有效的防护措施。
2对高频电磁场的防护措施
⑴氩弧焊的引弧与稳弧措施尽量用晶体管脉冲装置,而不用高频振荡装置,或仅用来引弧,电弧引燃后,立即切断高频电源。
⑵降低振荡频率,改变电容器及电感参数,将振荡频率降至30千周,减少对人体的影响。
⑶屏蔽电缆和导线,采用细铜质编制软线,套在电缆胶管外边(包括焊炬内及通至焊机的导线),并将其接地。
⑷因高频振荡电路的电压较高,要有良好而可靠的绝缘。
二 预防放射线伤害
1放射线的来源及危害
氩弧焊和等离子弧焊割使用的钍钨极含有1—12%的氧化钍,钍是一种放射性物质,在焊接过程中和与钍钨棒的接触过程中,受放射线影响。
放射线以两种形式作用于人体:一是体外照射,二是通过呼吸和消化系统进入体内发生体内照射。从对掩氩弧焊和等离子弧焊的大量调查和测定证明,它们的放射性危害性是较小的,因为每天消耗钍钨极棒仅100—200毫克,放射剂量极微,对人体影响不大。但有两种情况必须注意:一是在容器内焊接时,通风不畅,烟尘中放射性粒子有可能超过卫生标准;二是在磨削钍钨棒时及存在钍钨棒的地点,放射性气溶胶和放射性粉尘的浓度,可达到甚至超过卫生标准。放射性物质侵入体内可引起慢性放射性病,主要表现在一般机能状态减弱,可以看到明显的衰弱无力,对传染病的抵抗力明显降低,体重减轻等症状。
2预防放射线伤害的措施
⑴钍钨棒应有专用的贮存设备,大量存放时应藏于铁箱里,并安装排气管。
⑵采用密闭罩施焊时,在 *** 作中不应打开罩体,手工 *** 作时,必须戴送风防护头盔或采用其它有效措施。
⑶应备有专门砂轮来磨削钍钨棒,砂轮机要安装除尘设备,砂轮机地面上的磨屑要经常作湿式扫除,并集中深埋处理。
⑷磨削钍钨棒时应戴防尘口罩。接触钍钨棒后应以流动水和肥皂洗手,并经常清洗工作服和手套等。
⑸焊割时选择合理的规范,避免钍钨棒的过量烧损。
⑹尽可能不用钍钨棒而用铈钨棒或钇钨棒,因后两者无放射性。
三 预防弧光伤害
1弧光辐射的危害
焊接弧光辐射主要有可见光、红外线和紫外线。它们作用到人体上,被人体组织吸收,引起组织的热作用、光化学作用或电离作用,使人体组织受到损伤。
⑴紫外线 紫外线的波长在04—00076微米之间。波长越短,对生物损伤作用越大。人的皮肤和眼睛对紫外线的过度照射较为敏感。皮肤在强紫外线作用下,可引起皮炎,皮肤上出现红斑,象太阳晒过了一样,甚至出现小水泡、渗出液和浮肿,有灼烧、发痒的感觉,触痛,以后变黑,脱皮。眼睛对紫外线最敏感,短时间照射就会引起急性角膜结膜炎,称为电光性眼炎,其症状是疼痛、有沙粒感、多泪、畏光、怕风吹、视力不清等,一般不会有后遗症。
焊接电弧的紫外线对纤维的破坏能力很强,其中以棉织品损伤最严重。白色织物由于反射性能强,耐紫外线辐射能力较强。氩弧焊产生的紫外线是手弧焊的5—10倍,损伤更严重。氩弧焊的工作服宜用耐酸呢、柞绢等织品制作。
⑵红外线 红外线的波长在343—076微米之间,它对人体的危害主要是引起组织的热作用。长波红外线可被人体吸收,使人产生热的感觉;短波红外线可被组织吸收,使血液和深部组织加热,产生灼伤。在焊接过程中,眼睛受到强烈的红外线辐射,立即会感到强烈的灼伤和灼痛,发生闪光幻觉,长期接触还可能造成红外线白内障,视力减退,严重时能导致失明。还会造成视网膜灼伤。
⑶可见光 焊接电弧的可见光线的光变,比肉眼正常承受的光变要大到1万倍以上。受到照射时眼睛有疼痛感,一时看不清东西。通常叫电弧“晃眼“,在短时间内失去劳动能力,但不久既可恢复。
2焊接弧光的防护
为了防护弧光对眼睛的伤害,焊工在焊接时必须佩带镶有特制滤光片的面罩。面罩用暗色的钢纸板制成,成形合适、轻便、耐热、不导电、不漏光等。面罩上所镶的滤光镜片,俗称黑玻璃,常用的是吸收式过滤镜片,它的黑度选择应按照焊接电流的强度来决定,见表10—2。同时也应考虑焊工的视力情况和焊接环境的亮度。年轻焊工视力较好,宜用色号大和颜色深的滤光镜片,在夜间或光线较暗的环境焊接,也应选择较暗的镜片。
表10—2 滤光镜片的选择 滤 光 镜 片 色 号 颜 色 适 用 电 流 (A)
9 较 浅 <100 10 中 等 100—350 11 较 深 >350 有一种反射式防护镜片,能将强烈的弧光反射出去,使损害眼睛的弧光强度减弱,能更好地保护眼睛。还有一种光电式镜片,能自动调光,在未引弧时透明度较好,能清晰地看清镜外景物,当引燃电弧时,护镜黑度立即加深,能很好地遮光。这样换焊条时不再需要抬起面罩或翻动防护镜。
为了预防焊工皮肤受到电弧伤害,焊工的防护服装应采用浅色或白色的帆布制成,以增加对弧光的反射能力。工作衣的口袋以暗为准,工作时袖口应扎紧,手套要套在袖口外面,领口要扣好、裤管不能打折、皮肤不得外露。
为了防止辅助工和焊接地点附近的其它工作人员受弧光伤害,要注意互相配合,打火前先打招呼,辅助工要戴有色眼镜。在固定位置焊接时,应适用遮光屏。
四 预防飞溅金属灼伤
在电弧焊接过程中由于熔化金属和熔渣的飞溅及灼热的焊件都可能使焊工灼伤,被灼伤的皮肤会引起感染而溃烂。因此焊工在 *** 作时,必须穿帆布工作服,戴工作帽和长袖手套,穿工作鞋,工作衣不要束在裤腰里,口袋应盖好,并扣好钮扣,必要时脖子上要围毛巾,长时间坐着焊接时要系围裙。
当高空或多层焊接时,在焊件下方应设置挡板,防止液态金属和熔渣下跌时溅起扩大伤害面。
五 预防焊接烟尘及有毒气体中毒
1金属粉尘的危害
焊接过程中会产生大量的金属粉尘,称为焊接粉尘。金属粉尘首先来源于焊接过程中金属元素的蒸发。焊接电弧的高温,往往高于金属的沸点,许多金属元素被蒸发呈金属蒸汽状态飘浮起来,并随即发生冷凝和氧化,形成不同粒度的金属粉尘。焊接金属粉尘的直径通常在1微米以下,容易吸入肺部发生病变。
据现场调查和实验,焊接金属粉尘的成分及浓度主要取决于焊接方法、焊接材料及焊接规范。手工电弧焊采用铁粉焊条焊接时发尘量最高,焊接电流强度越大,粉尘浓度越高。
焊接烟尘的成分不同,造成人体的危害也有所不同。黑色金属涂料焊条产生粉尘的主要元素有铁、硅、锰等其中锰毒性最大。在焊接粉尘浓度较大的情况下,又没有相应的排尘措施时,长期接触焊接粉尘能引起焊工尘肺、锰中毒和金属热等职业性疾病。
⑴焊工尘肺 尘肺是由于长期吸入过量的粉尘,引起肺组织的弥漫性纤维病变。在焊接区域周围空气中,除存在大量的焊接金属粉尘外,尚有多种有刺激性和促使肺组织产生纤维化的有毒物质,如硅、硅酸盐、锰、铬、氟化物及其它金属氧化物等。此外,还有臭氧、氮氧化物等混合烟尘和有毒气体,能促使尘肺的形成。焊工尘肺就是这些有害因素长期慢性综合作用的结果。
尘肺的发病一般比较缓慢,多在接触烟尘后10年,方有所觉察。主要症状为气短、咳嗽咯痰、胸闷和胸痛等,有的X光胸片中有纤维状阴影,同时对肺功能也有所影响。
⑵锰中毒 锰中毒主要由锰的化合物引起。锰蒸汽在空气中能很快地氧化成灰色的一氧化锰和棕红色的四氧化三锰烟雾。锰的氧化物和锰粉通过呼吸道和消化道进入人体,可引起神经衰弱症及神经功能紊乱。锰中毒过程较缓慢,大都在接触5年以后,甚至可长达20年才逐渐发病。
⑶焊工金属热 焊接金属烟尘中的氧化铁,氧化锰微粒和氟化物等物质均可引起焊工金属热反应。手工电弧焊时,碱性焊条比酸性焊条容易产生金属热反应。其典型症状为工作后寒战,继之发烧、倦怠、口内金属味、喉痒呼吸困难、胸痛、食欲不振、恶心等。据调查,在密闭罐内、船舱等使用碱性焊条焊接的焊工,在通风措施不当时,金属热反应的发病率较高。
2有毒气体的危害
在焊接电弧的高温和强烈紫外线作用下,在弧区周围形成多种有害气体,其中主要有臭氧、氮氧化物、一氧化碳和氟化氢等。
⑴臭氧 空气中的氧在短波紫外线照射下,发生光化学反应而生成臭氧(O3)。臭氧是一种淡蓝色的气体,具有刺激性气味。浓度较高时呈腥臭味;浓度再高时,在腥臭味中略带酸味。它对人体的危害主要是对呼吸道和肺有强烈刺激作用。臭氧浓度超过一定限度时,往往引起咳嗽、咽干、舌燥、胸闷、食欲不振、疲乏无力、头晕,恶心、全身疼痛等。严重时特别是在密闭容器内焊接而又通风不畅时,还可引起支气管炎。
据测定,焊接环境中的臭氧浓度与焊接方法、焊接材料、保护气体及焊接规范等因素有关。不同焊接方法在离电弧150毫米处的臭氧平均浓度示于表10—3。
我国根据对生产现场的调查研究结果,臭氧浓度卫生标准规定为03毫克/米3。
⑵氮氧化物 焊接过程中的氮氧化物是由于电弧高温作用,引起空气中氮、氧分子离解,重新组合而形成的。氮氧化物也属于具有刺激性的有毒气体,但它比臭氧的毒性小。氮氧化物主要是对肺有刺激作用。
影响产生氮氧化物浓度的因素,与臭氧类同。在氩弧焊和等离子弧焊割时,如果不采取通风措施,氮氧化物的浓度往往超过卫生标准十几倍,甚至几十倍。我国规定氮氧化物(换算成=氧化氮)的卫生标准为5毫克/米3。
在焊接过程中,氮氧化物单一存在的可能性很小,通常是臭氧和氮氧化物同时存在,因此他们的毒性更大。一般情况下,两种有毒气体同时存在比单一有毒气体的危害作用高15—20倍。
⑶一氧化碳 一氧化碳是由二氧化碳气体在电弧高温作用下发生分解而形成的。各种明弧焊都会产生一氧化碳气体,其中以二氧化碳保护焊所产生的浓度最高。据测定,在焊工面罩附近一氧化碳浓度可达300毫克/米3,超过卫生标准十几倍。等离子弧焊割时产生的一氧化碳浓度也相当高,在通风不良的环境中工作应特别引起注意。手工电弧焊烟气中约有1%的一氧化碳,通风不良时的密闭容器中浓度可达15毫克/米3。我国卫生标准规定一氧化碳浓度为30毫克/米3。
一氧化碳是一种窒息性气体,它对人体的毒性作用是使氧在体内的输送或组织吸收氧的功能发生障碍,造成组织缺氧,出现一系列缺氧的症状和体症。一氧化碳急性中毒时表现为:头疼、眩晕、恶心、呕吐、全身无力、两腿发软,以至有昏厥感。如立即离开现场,吸入新鲜空气,症状可迅速消失。较严重时,除上述症状加重外,脉搏增快、不能行动,进入昏迷状态,甚至并发脑水肿、肺水肿、心肌损害、心律紊乱等症状。焊接条件下一氧化碳主要表现为对人体的慢性影响,长期吸入,可出现头疼、头晕、面色苍白、四肢无力、体重下降、全身不适等神经衰弱症。CO2气体保护焊产生飞溅的原因及防止措施主要有以下几方面:
(1)由冶金反应引起的飞溅:这种飞溅主要是CO2气体造成的。由于CO2具有强烈的氧化性,焊接时熔滴和熔池中的碳元素被氧化而生成CO2气体,在电弧高温作用下,其体积急剧膨胀,逐渐增大的CO2气体压力最终突破液态熔滴和熔池表面的约束,形成爆破,从而产生大量细粒的飞溅。但采用含有脱氧元素的焊丝,这种飞溅已不显著。
(2)由极点压力引起的飞溅:这种飞溅主要取决于电弧极性。当用正极性焊接时,正离子飞向焊丝末端的熔滴,机械冲击力大,而造成大颗粒飞溅。当采用反极性焊接时,主要是电子撞击熔滴,极点压力大大减少,故飞溅比较小,所以通常采用直流反接进行焊接。
(3)熔滴短路时引起的飞溅:这是在短路过渡和有短路大滴过渡焊接中产生的飞溅,电源动特性不好时更加严重。通过改变焊接回路的电感数值,能够减少这种飞溅,若串入回路电感值较合适时,则飞溅较小,爆声较小,焊接过程比较稳定。
(4)非轴向熔滴过渡造成的飞溅:这种飞溅是在大滴过渡焊接时由于电弧斥力所引起的。熔滴在极点压力和弧柱中气流的压力共同作用下,被推向焊丝末端的一边,并抛到熔池外面,使熔滴形成大颗粒飞溅。
(5)焊接规范选择不当引起的飞溅:这种飞溅是在焊接过程中,由于焊接电源、电弧电压、电感值等规范参数选择不当所造成的。因此,必须正确地选择焊接规范,使产生这种飞溅的可能性减小。管道焊接防飞溅总结
一、管道焊接中常用的焊接方法及特点
表1常用焊接方法基本特点与应用
二、管道焊接中常用的防飞溅措施:
1、
2、
3、
4、 根据工件厚薄、坡口形式、焊接位置等选好焊丝直径,再确定焊接电流,调节好回路电感量,即选用合适的焊接参数; 选用合适的气体配比 选用合适的焊材 在坡口表面喷涂防溅剂。
三、手工电弧焊飞溅控制
1、焊条电弧焊是用手工 *** 纵焊条进行焊接的电弧焊方法。焊条电弧焊时,在焊条末端和工件之间燃烧的电弧所产生的高温使焊条药皮与焊芯及工件熔化,熔化的焊芯端部迅速地形成细小的金属熔滴,通过弧柱过渡到局部熔化的工件表面,融合一起形成熔池。药皮熔化过程中产生的气体和熔渣,不仅使熔池和电弧周围的空气隔绝,而且和熔化了的焊芯、母材发生一系列冶金反应,保证所形成焊缝的性能。随着电弧以适当的弧长和速度在工件上不断地前移,熔池液态金属逐步冷却结晶,形成焊缝。在焊条熔化金属冲击下,部分熔滴飞离熔池形成了飞溅。由于焊接飞溅的不可避免,对构件外观带来不良影响。
2、手工电弧焊控制飞溅的方法:
1)、应选择合理的焊接电流与焊接电压参数,避免使用大滴排斥过渡形式;同时,应选用优质焊接材料,如选用含C 量低、具有脱氧元素Mn 和Si 的焊材等,避免由于焊接材料的冶金反应导致气体析出或膨胀引起的飞溅。
2)、选用合适的焊接极性和电源。如尽量采用直流反接,下降外特性或是平外特性的焊机。
3)、在焊前坡口两边喷涂防飞溅剂。
四、CO2气体保护焊飞溅控制
1、 CO2气体保护焊飞溅的危害
焊接过程中,大部分焊丝熔化金属过渡到熔池中,有一部分焊丝熔化金属飞向熔池之外的金属形成飞溅。气体保护焊最显著的缺点是飞溅大,飞溅率一般为3%~20%,当飞溅率达到20% 以上时,就不能进行正常焊接了。
CO2气体保护焊飞溅的危害还体现在:降低焊接熔敷效率,降低焊接生产率;飞溅物易粘附在焊件上,影响焊接质量,使焊接劳动条件变差;焊接熔池不稳定,使焊缝外形较为粗糙等。
2、CO2 气体保护焊飞溅产生的机理
CO2气体在电弧温度区间热导率较高,加上分解吸热,消耗电弧大量热能,从而引起弧柱及电弧斑点强烈收缩,即使增大电流,弧柱和斑点直径也很难扩展,这是CO2气体保护焊产生飞溅的最主要原因,是由CO2气体本身物理性质决定的。
下面我们就从CO2气体保护焊熔滴过渡的几种形式,分别阐述飞溅产生的原因。
1) 、熔滴过渡过程中产生的飞溅
熔滴过渡时产生的飞溅主要是由于气流流动而喷出的飞溅,受电弧压力作用并通过爆炸而形成的,以及熔滴和熔池接触时,由于短路电流在通电后的接触部放电加热,即受到保险丝作用被熔断而产生飞溅。
(a )短路过渡 当焊接电流、电压较小时,熔滴过渡的形式一般为短路过渡,当熔滴与熔池接触时,由熔滴把焊丝与熔池连接起来,形成液体小桥,随着短路电流的增加,使缩颈小桥金属迅速的加热,最后导致小桥金属发生汽化爆炸,形成飞溅。同时由于引燃电弧对熔池产生一定的冲击力,也会引起飞溅。
(b )颗粒状过渡 焊接电流较大(如Φ16焊丝,电流为300~350A )、电弧电压较高时,由于CO2气体的性质活泼,这时熔滴在斑点压力的作用下而上挠,易形成大滴状飞溅。如果再增加电流,熔滴过渡形式将变为细颗粒过渡,这时飞溅减少,主要产生在熔滴与焊丝之间的缩颈处,该处通过的电流密度较大使金属过热而爆断,形成颗粒细小的飞溅。大滴状过渡时,如果熔滴在焊丝端头停留时间较长,加热温度很高,熔滴内部发生强烈的冶金反应或蒸发,同时猛烈的析出气体,使熔滴爆炸而造成飞溅。
2) 、焊接熔池中产生的飞溅
在焊接熔池中产生的飞溅,是由于熔滴进入熔池时或者是由熔池喷出气体气泡时产生的表面涨力而导致产生的飞溅,这时一般以微细颗粒居多。CO2气体保护焊时,焊接飞溅主要是由于 CO2气体在高温分解时所引起的膨胀,以及熔滴和熔池中的碳被氧化生成 CO所引起的。焊接直流回路电感值调节不当,致使电源的动特性不合适,或造成短路电流增长速度过快或过慢,导致产生飞溅。此外,焊接电流、电压和极性等规范参数选择不当,也会对飞溅有直接影响。
3、减少飞溅的有效措施
1) 、正确选择焊接规范参数
(a)、CO2气体保护焊采用正极性时由于电弧受压力,飞溅剧增且颗粒大,因此一般采用直流反极性接法。
(b)、选择合适的焊接电流区域 在CO2电弧中,对于每种直径焊丝,其飞溅率和焊接电流之间都存在图1所示的规律:即在小电流区(短路过渡区)飞溅率较小,进入大
电流区(细颗粒过渡区)飞溅率也较小,而中间区飞溅率最大。所以在选择焊接电流时,应尽可能避开飞溅率高的电流区域。
图1
(c )、焊q垂直焊接时飞溅量最少,倾斜角度越大,飞溅就越多。焊q前倾或后倾最好不超过 20o 。( 4)焊丝伸出长度应尽可能缩短。如Φ12mm 焊丝,电流280A 时,焊丝伸出长度从20mm 增至30mm ,飞溅量增加约5% 。
2)、颗粒过渡焊接时在CO2气体中加入 Ar气。 CO2气体在电弧温度区间热导率较
高,加上分解吸热,消耗电弧大量热能,从而引起弧柱及电弧斑点强烈收缩,即使增大电流,弧柱和斑点直径也很难扩展,也就是说,斑点压力阻止了熔滴的过渡,导致CO2气保焊产生较大的飞溅。在气体中加入Ar 气后,改变了纯CO2气体的物理性质和化学性质,随着 Ar气比例增大,飞溅将逐渐减少(见图2)。所以说在CO2气体中加入Ar 气是减少颗粒过渡焊接
的有效途径。
3)、在焊接回路中串联大一些的电感 采
用中等电流规范气体保护焊时,因弧长较短,
同时熔滴和熔池都在不停的运动,熔滴与熔池
极易发生短路过程,所以CO2气体保护焊除
大滴状排斥过渡外,还有一部分熔滴是短路过
渡,在焊接回路中串联大一些的电感,使短路
电流上升速度慢一些,这样可以适当的减少
飞溅。焊接回路中电感值对飞溅率的影响如
图3所示,当电感系数由100µH 增至600
µH 时,焊接飞溅显著减小。
4)、采用低飞溅率焊丝
A)对于实芯焊丝,在保证力学性能的前提
下,应尽可能降低其中含碳量,并添加适量
的钛、铝等合金元素。
B )采用药芯焊丝。药芯焊丝的金属飞溅率
约为实芯焊丝的1/3 。
5)、外部喷涂防飞溅剂
4、小结
从实际应用可知,减少飞溅的具体措施:在
实际工作中,一般先根据工件厚薄、坡口形式、焊接位置等选好焊丝直径,再确定焊
接电流,调节好回路电感量,即选用合适的焊接参数;在CO2气体中加入 Ar气;在焊接回路在中串联电感;是降低气体保护焊飞溅的有效方法。根据不同熔滴过渡形式下飞溅的不同成因,应采用不同的降低飞溅的不同成因,应采用不同的降低飞溅的方法:
1)在熔滴自由过渡时,应选择合理的焊接电流与焊接电压参数,避免使用大滴排斥过渡形式;同时,应选用优质焊接材料,如选用含C 量低、具有脱氧元素Mn 和Si 的焊丝H08Mn2SiA 等,避免由于焊接材料的冶金反应导致气体析出或膨胀引起的飞溅。
2)在短路过渡时,可以采用(Ar+CO2)混合气体代替CO2以减少飞溅。如加入φ(Ar )=20%~30%的Ar 。这是由于随着含氩量的增加,电弧形态和熔滴过渡特点发生了改变。燃弧时电弧的弧根扩展,熔滴的轴向性增强。这一方面使得熔滴容易与熔池会合,短路小桥出现在焊丝和熔池之间。另一方面熔滴在轴向力的作用下,得到较均匀的短路过渡过程,短路峰值电流也不太高,有利于减少飞溅率。
在纯CO2气氛下,通常通过焊接电流波形控制法,降低短路初期电流以及短路小桥破断瞬间的电流,减少小桥电爆炸能量,达到降低飞溅的目的。
通过改进送丝系统,采用脉冲送丝代替常规的等速送丝,使熔滴在脉动送进的情况下与熔池发生短路,使短路过渡频率与脉动送丝的频率基本一致,每个短路周期的电参数的重复性好,短路峰值电流也均匀一致,其数值也不高,从而降低了飞溅。 如果在脉动送丝的基础上,再配合电流波形控制,其效果更佳。采用不同控制方法时,焊接飞溅率与焊接电流之间的关系。氩弧焊对人身体的危害 电焊烟尘 1、可能导致的职业病:电焊工尘肺 2、行业举例: (1)体育用品制造业:铜管打孔
(2)机械工业:手工电弧焊、气体保护焊、氩弧焊、碳弧气刨、气焊
(3)交通运输设备制造业:机车部件组装、平台组装、船舶管系安装、船舶电气安装、船舶锚链
(4)加工、制动梁加工、汽车总装、摩托车装配 氩弧焊安全技术 氩弧焊除了与手工电弧焊相同的触电、烧伤、火灾以外,还有高频电磁场、电极放射线和比手弧焊强得多的弧光伤害、焊接烟尘和有毒气体等。
其中最主要的是高频电和臭氧。 一 预防高频电磁场的伤害 1高频电磁场的产生及危害 在钨极氩弧焊和等离子弧焊割时,常用高频振荡器来激发引弧,有的交流氩弧焊机还用高频振荡器来稳定电弧。焊接通常使用的高频振荡器的频率为200—500千周,电压2500—3500伏,高频电流强度3—7毫安,电场强度约140—190伏/米。焊工长期接触高频电磁场能引起植物神经功能紊乱和神经衰弱。表现为全身不适、头昏、多梦、头痛、记忆力减退、疲乏无力、食欲不振、失眠及血压偏低等症状。 高频电磁场的参考卫生标准规定8小时接触的允许辐射强度为20伏/米。据测定,手工钨极氩弧焊时焊工各部位受到的高频电磁场强度均超过标准,其中以手部强度最大,超过卫生标准5倍多。如果只是引弧时使用高频振荡器,因时间短,影响较小,但长期接触也是有害的,必须采用有效的防护措施。 2对高频电磁场的防护措施 ⑴氩弧焊的引弧与稳弧措施尽量用晶体管脉冲装置,而不用高频振荡装置,或仅用来引弧,电弧引燃后,立即切断高频电源。
⑵降低振荡频率,改变电容器及电感参数,将振荡频率降至30千周,减少对人体的影响。
⑶屏蔽电缆和导线,采用细铜质编制软线,套在电缆胶管外边(包括焊炬内及通至焊机的导线),并将其接地。
⑷因高频振荡电路的电压较高,要有良好而可靠的绝缘。
二 预防放射线伤害 1放射线的来源及危害 氩弧焊和等离子弧焊割使用的钍钨极含有1—12%的氧化钍,钍是一种放射性物质,在焊接过程中和与钍钨棒的接触过程中,受放射线影响。 放射线以两种形式作用于人体:一是体外照射,二是通过呼吸和消化系统进入体内发生体内照射。从对掩氩弧焊和等离子弧焊的大量调查和测定证明,它们的放射性危害性是较小的,因为每天消耗钍钨极棒仅100—200毫克,放射剂量极微,对人体影响不大。但有两种情况必须注意:一是在容器内焊接时,通风不畅,烟尘中放射性粒子有可能超过卫生标准;二是在磨削钍钨棒时及存在钍钨棒的地点,放射性气溶胶和放射性粉尘的浓度,可达到甚至超过卫生标准。放射性物质侵入体内可引起慢性放射性病,主要表现在一般机能状态减弱,可以看到明显的衰弱无力,对传染病的抵抗力明显降低,体重减轻等症状。 2预防放射线伤害的措施 ⑴钍钨棒应有专用的贮存设备,大量存放时应藏于铁箱里,并安装排气管。
⑵采用密闭罩施焊时,在 *** 作中不应打开罩体,手工 *** 作时,必须戴送风防护头盔或采用其它有效措施。
⑶应备有专门砂轮来磨削钍钨棒,砂轮机要安装除尘设备,砂轮机地面上的磨屑要经常作湿式扫除,并集中深埋处理。
⑷磨削钍钨棒时应戴防尘口罩。接触钍钨棒后应以流动水和肥皂洗手,并经常清洗工作服和手套等。
⑸焊割时选择合理的规范,避免钍钨棒的过量烧损。
⑹尽可能不用钍钨棒而用铈钨棒或钇钨棒,因后两者无放射性。 三 预防弧光伤害 1弧光辐射的危害 焊接弧光辐射主要有可见光、红外线和紫外线。它们作用到人体上,被人体组织吸收,引起组织的热作用、光化学作用或电离作用,使人体组织受到损伤。 ⑴紫外线 紫外线的波长在04—00076微米之间。波长越短,对生物损伤作用越大。人的皮肤和眼睛对紫外线的过度照射较为敏感。皮肤在强紫外线作用下,可引起皮炎,皮肤上出现红斑,象太阳晒过了一样,甚至出现小水泡、渗出液和浮肿,有灼烧、发痒的感觉,触痛,以后变黑,脱皮。眼睛对紫外线最敏感,短时间照射就会引起急性角膜结膜炎,称为电光性眼炎,其症状是疼痛、有沙粒感、多泪、畏光、怕风吹、视力不清等,一般不会有后遗症。 焊接电弧的紫外线对纤维的破坏能力很强,其中以棉织品损伤最严重。白色织物由于反射性能强,耐紫外线辐射能力较强。氩弧焊产生的紫外线是手弧焊的5—10倍,损伤更严重。氩弧焊的工作服宜用耐酸呢、柞绢等织品制作。 ⑵红外线 红外线的波长在343—076微米之间,它对人体的危害主要是引起组织的热作用。长波红外线可被人体吸收,使人产生热的感觉;短波红外线可被组织吸收,使血液和深部组织加热,产生灼伤。在焊接过程中,眼睛受到强烈的红外线辐射,立即会感到强烈的灼伤和灼痛,发生闪光幻觉,长期接触还可能造成红外线白内障,视力减退,严重时能导致失明。还会造成视网膜灼伤。 ⑶可见光 焊接电弧的可见光线的光变,比肉眼正常承受的光变要大到1万倍以上。受到照射时眼睛有疼痛感,一时看不清东西。通常叫电弧“晃眼“,在短时间内失去劳动能力,但不久既可恢复。 2焊接弧光的防护 为了防护弧光对眼睛的伤害,焊工在焊接时必须佩带镶有特制滤光片的面罩。面罩用暗色的钢纸板制成,成形合适、轻便、耐热、不导电、不漏光等。面罩上所镶的滤光镜片,俗称黑玻璃,常用的是吸收式过滤镜片,它的黑度选择应按照焊接电流的强度来决定,见表10—2。同时也应考虑焊工的视力情况和焊接环境的亮度。年轻焊工视力较好,宜用色号大和颜色深的滤光镜片,在夜间或光线较暗的环境焊接,也应选择较暗的镜片。
表10—2 滤光镜片的选择 滤 光 镜 片 色 号 颜 色 适 用 电 流 (A)
9 较 浅 <100 10 中 等 100—350 11 较 深 >350 有一种反射式防护镜片,能将强烈的弧光反射出去,使损害眼睛的弧光强度减弱,能更好地保护眼睛。还有一种光电式镜片,能自动调光,在未引弧时透明度较好,能清晰地看清镜外景物,当引燃电弧时,护镜黑度立即加深,能很好地遮光。这样换焊条时不再需要抬起面罩或翻动防护镜。 为了预防焊工皮肤受到电弧伤害,焊工的防护服装应采用浅色或白色的帆布制成,以增加对弧光的反射能力。工作衣的口袋以暗为准,工作时袖口应扎紧,手套要套在袖口外面,领口要扣好、裤管不能打折、皮肤不得外露。 为了防止辅助工和焊接地点附近的其它工作人员受弧光伤害,要注意互相配合,打火前先打招呼,辅助工要戴有色眼镜。在固定位置焊接时,应适用遮光屏。 四 预防飞溅金属灼伤 在电弧焊接过程中由于熔化金属和熔渣的飞溅及灼热的焊件都可能使焊工灼伤,被灼伤的皮肤会引起感染而溃烂。因此焊工在 *** 作时,必须穿帆布工作服,戴工作帽和长袖手套,穿工作鞋,工作衣不要束在裤腰里,口袋应盖好,并扣好钮扣,必要时脖子上要围毛巾,长时间坐着焊接时要系围裙。 当高空或多层焊接时,在焊件下方应设置挡板,防止液态金属和熔渣下跌时溅起扩大伤害面。 五 预防焊接烟尘及有毒气体中毒 1金属粉尘的危害 焊接过程中会产生大量的金属粉尘,称为焊接粉尘。金属粉尘首先来源于焊接过程中金属元素的蒸发。焊接电弧的高温,往往高于金属的沸点,许多金属元素被蒸发呈金属蒸汽状态飘浮起来,并随即发生冷凝和氧化,形成不同粒度的金属粉尘。焊接金属粉尘的直径通常在1微米以下,容易吸入肺部发生病变。 据现场调查和实验,焊接金属粉尘的成分及浓度主要取决于焊接方法、焊接材料及焊接规范。手工电弧焊采用铁粉焊条焊接时发尘量最高,焊接电流强度越大,粉尘浓度越高。 焊接烟尘的成分不同,造成人体的危害也有所不同。黑色金属涂料焊条产生粉尘的主要元素有铁、硅、锰等其中锰毒性最大。在焊接粉尘浓度较大的情况下,又没有相应的排尘措施时,长期接触焊接粉尘能引起焊工尘肺、锰中毒和金属热等职业性疾病。 ⑴焊工尘肺 尘肺是由于长期吸入过量的粉尘,引起肺组织的弥漫性纤维病变。在焊接区域周围空气中,除存在大量的焊接金属粉尘外,尚有多种有刺激性和促使肺组织产生纤维化的有毒物质,如硅、硅酸盐、锰、铬、氟化物及其它金属氧化物等。此外,还有臭氧、氮氧化物等混合烟尘和有毒气体,能促使尘肺的形成。焊工尘肺就是这些有害因素长期慢性综合作用的结果。 尘肺的发病一般比较缓慢,多在接触烟尘后10年,方有所觉察。主要症状为气短、咳嗽咯痰、胸闷和胸痛等,有的X光胸片中有纤维状阴影,同时对肺功能也有所影响。 ⑵锰中毒 锰中毒主要由锰的化合物引起。锰蒸汽在空气中能很快地氧化成灰色的一氧化锰和棕红色的四氧化三锰烟雾。锰的氧化物和锰粉通过呼吸道和消化道进入人体,可引起神经衰弱症及神经功能紊乱。锰中毒过程较缓慢,大都在接触5年以后,甚至可长达20年才逐渐发病。 ⑶焊工金属热 焊接金属烟尘中的氧化铁,氧化锰微粒和氟化物等物质均可引起焊工金属热反应。手工电弧焊时,碱性焊条比酸性焊条容易产生金属热反应。其典型症状为工作后寒战,继之发烧、倦怠、口内金属味、喉痒呼吸困难、胸痛、食欲不振、恶心等。据调查,在密闭罐内、船舱等使用碱性焊条焊接的焊工,在通风措施不当时,金属热反应的发病率较高。 2有毒气体的危害 在焊接电弧的高温和强烈紫外线作用下,在弧区周围形成多种有害气体,其中主要有臭氧、氮氧化物、一氧化碳和氟化氢等。 ⑴臭氧 空气中的氧在短波紫外线照射下,发生光化学反应而生成臭氧(O3)。臭氧是一种淡蓝色的气体,具有刺激性气味。浓度较高时呈腥臭味;浓度再高时,在腥臭味中略带酸味。它对人体的危害主要是对呼吸道和肺有强烈刺激作用。臭氧浓度超过一定限度时,往往引起咳嗽、咽干、舌燥、胸闷、食欲不振、疲乏无力、头晕,恶心、全身疼痛等。严重时特别是在密闭容器内焊接而又通风不畅时,还可引起支气管炎。 据测定,焊接环境中的臭氧浓度与焊接方法、焊接材料、保护气体及焊接规范等因素有关。不同焊接方法在离电弧150毫米处的臭氧平均浓度示于表10—3。 我国根据对生产现场的调查研究结果,臭氧浓度卫生标准规定为03毫克/米3。 ⑵氮氧化物 焊接过程中的氮氧化物是由于电弧高温作用,引起空气中氮、氧分子离解,重新组合而形成的。氮氧化物也属于具有刺激性的有毒气体,但它比臭氧的毒性小。氮氧化物主要是对肺有刺激作用。 影响产生氮氧化物浓度的因素,与臭氧类同。在氩弧焊和等离子弧焊割时,如果不采取通风措施,氮氧化物的浓度往往超过卫生标准十几倍,甚至几十倍。我国规定氮氧化物(换算成=氧化氮)的卫生标准为5毫克/米3。 在焊接过程中,氮氧化物单一存在的可能性很小,通常是臭氧和氮氧化物同时存在,因此他们的毒性更大。一般情况下,两种有毒气体同时存在比单一有毒气体的危害作用高15—20倍。 ⑶一氧化碳 一氧化碳是由二氧化碳气体在电弧高温作用下发生分解而形成的。各种明弧焊都会产生一氧化碳气体,其中以二氧化碳保护焊所产生的浓度最高。据测定,在焊工面罩附近一氧化碳浓度可达300毫克/米3,超过卫生标准十几倍。等离子弧焊割时产生的一氧化碳浓度也相当高,在通风不良的环境中工作应特别引起注意。手工电弧焊烟气中约有1%的一氧化碳,通风不良时的密闭容器中浓度可达15毫克/米3。我国卫生标准规定一氧化碳浓度为30毫克/米3。 一氧化碳是一种窒息性气体,它对人体的毒性作用是使氧在体内的输送或组织吸收氧的功能发生障碍,造成组织缺氧,出现一系列缺氧的症状和体症。一氧化碳急性中毒时表现为:头疼、眩晕、恶心、呕吐、全身无力、两腿发软,以至有昏厥感。如立即离开现场,吸入新鲜空气,症状可迅速消失。较严重时,除上述症状加重外,脉搏增快、不能行动,进入昏迷状态,甚至并发脑水肿、肺水肿、心肌损害、心律紊乱等症状。焊接条件下一氧化碳主要表现为对人体的慢性影响,长期吸入,可出现头疼、头晕、面色苍白、四肢无力、体重下降、全身不适等神经衰弱症。
贴片电感失效原因主要表现在五个方面,分别是耐焊性、可焊性、焊接不良、上机开路、磁路破损等导致的失效,下面金籁科技小编将就这五点做出解释。
在此之前,我们先了解一下电感失效模式,以及贴片电感失效的机理。
电感器失效模式:电感量和其他性能的超差、开路、短路。
贴片功率电感失效原因:
1磁芯在加工过程中产生的机械应力较大,未得到释放;
2磁芯内有杂质或空洞磁芯材料本身不均匀,影响磁芯的磁场状况,使磁芯的磁导率发生了偏差;
3由于烧结后产生的烧结裂纹;
4铜线与铜带浸焊连接时,线圈部分溅到锡液,融化了漆包线的绝缘层,造成短路;
5铜线纤细,在与铜带连接时,造成假焊,开路失效。
一、耐焊性
低频贴片功率电感经回流焊后感量上升<20%。
由于回流焊的温度超过了低频贴片电感材料的居里温度,出现退磁现象。贴片电感退磁后,贴片电感材料的磁导率恢复到最大值,感量上升。一般要求的控制范围是贴片电感耐焊接热后,感量上升幅度小于20%。
耐焊性可能造成的问题是有时小批量手工焊时,电路性能全部合格(此时贴片电感未整体加热,感量上升小)。但大批量贴片时,发现有部分电路性能下降。这可能是由于过回流焊后,贴片电感感量会上升,影响了线路的性能。在对贴片电感感量精度要求较严格的地方(如信号接收发射电路),应加大对贴片电感耐焊性的关注。
检测方法:先测量贴片电感在常温时的感量值,再将贴片电感浸入熔化的焊锡罐里10秒钟左右,取出。待贴片电感彻底冷却后,测量贴片电感新的感量值。感量增大的百分比既为该贴片电感的耐焊性大小。
二、可焊性
当达到回流焊的温度时,金属银(Ag)会跟金属锡(Sn)反应形成共熔物,因此不能在贴片电感的银端头上直接镀锡。而是在银端头上先镀镍(2um左右),形成隔绝层,然后再镀锡(4-8um)。
可焊性检测
将待检测的贴片电感的端头用酒精清洗干净,将贴片电感在熔化的焊锡罐中浸入4秒钟左右,取出。如果贴片电感端头的焊锡覆盖率达到90%以上,则可焊性合格。
可焊性不良
1、端头氧化:当贴片电感受高温、潮湿、化学品、氧化性气体(SO2、NO2等)的影响,或保存时间过长,造成贴片电感端头上的金属Sn氧化成SnO2,贴片电感端头变暗。由于SnO2不和Sn、Ag、Cu等生成共熔物,导致贴片电感可焊性下降。贴片电感产品保质期:半年。如果贴片电感端头被污染,比如油性物质,溶剂等,也会造成可焊性下降。
2、镀镍层太薄:如果镀镍时,镍层太薄不能起隔离作用。回流焊时,贴片电感端头上的Sn和自身的Ag首先反应,而影响了贴片电感端头上的Sn和焊盘上的焊膏共熔,造成吃银现象,贴片电感的可焊性下降。
判断方法:将贴片电感浸入熔化的焊锡罐中几秒钟,取出。如发现端头出现坑洼情况,甚至出现瓷体外露,则可判断是出现吃银现象的。
3、焊接不良
内应力
如果贴片电感在制作过程中产生了较大的内部应力,且未采取措施消除应力,在回流焊过程中,贴好的贴片电感会因为内应力的影响产生立片,俗称立碑效应。
判断贴片电感是否存在较大的内应力,可采取一个较简便的方法:
取几百只的贴片电感,放入一般的烤箱或低温炉中,升温至230℃左右,保温,观察炉内情况。如听见噼噼叭叭的响声,甚至有片子跳起来的声音,说明产品有较大的内应力。
元件变形
如果贴片电感产品有弯曲变形,焊接时会有放大效应。
焊接不良、虚焊
焊接正常如图
焊盘设计不当
a焊盘两端应对称设计,避免大小不一,否则两端的熔融时间和润湿力会不同。
b焊合的长度在03mm以上(即贴片电感的金属端头和焊盘的重合长度)。
c焊盘余地的长度尽量小,一般不超过05mm。
d焊盘的本身宽度不宜太宽,其合理宽度和MLCI宽度相比,不宜超过025mm。
贴片不良
当贴片因为焊垫的不平或焊膏的滑动,而造成贴片电感偏移了θ角时。由于焊垫熔融时产生的润湿力,可能形成以上三种情况,其中自行归正为主,但有时会出现拉的更斜,或者单点拉正的情况,贴片电感被拉到一个焊盘上,甚至被拉起来,斜立或直立(立碑现象)。目前带θ角偏移视觉检测的贴片机可减少此类失效的发生。
焊接温度
回流焊机的焊接温度曲线须根据焊料的要求设定,应该尽量保证贴片电感两端的焊料同时熔融,以避免两端产生润湿力的时间不同,导致贴片电感在焊接过程中出现移位。如出现焊接不良,可先确认一下,回流焊机温度是否出现异常,或者焊料有所变更。
电感在急冷、急热或局部加热的情况下易破损,因此焊接时应特别注意焊接温度的控制,同时尽可能缩短焊接接触时间。
四、上机开路虚焊、焊接接触不良
从线路板上取下贴片电感测试,贴片电感性能是否正常。
电流烧穿
如果选取的贴片电感磁珠的额定电流较小,或电路中存在大的冲击电流会造成电流烧穿,贴片电感或磁珠失效,导致电路开路。从线路板上取下贴片电感测试,贴片电感失效,有时有烧坏的痕迹。如果出现电流烧穿,失效的产品数量会较多,同批次中失效产品一般达到百分级以上。
焊接开路
回流焊时急冷急热,使贴片电感内部产生应力,导致有极少部分的内部存在开路隐患的贴片电感的缺陷变大,造成贴片电感开路。从线路板上取下贴片电感测试,贴片电感失效。如果出现焊接开路,失效的产品数量一般较少,同批次中失效产品一般小于千分级。
金籁科技一体成型电感
五、磁体破损
磁体强度
贴片电感烧结不好或其它原因,造成瓷体整体强度不够,脆性大,在贴片时,或产品受外力冲击造成瓷体破损。
附着力
如果贴片电感端头银层的附着力差,回流焊时,贴片电感急冷急热,热胀冷缩产生应力,以及瓷体受外力冲击,均有可能会造成贴片电感端头和瓷体分离、脱落;或者焊盘太大,回流焊时,焊膏熔融和端头反应时产生的润湿力大于端头附着力,造成端头破坏。
贴片电感过烧或生烧,或者制造过程中,内部产生微裂纹。回流焊时急冷急热,使贴片电感内部产生应力,出现晶裂,或微裂纹扩大,造成磁体破损等情况。
电焊作业 *** 作的注意事项:1电焊机外壳,必须接地良好,其电源的拆装应由电工进行。
2电焊机要设单独的开关,开关应放在防雨的闸箱内,拉合时应戴好手套侧向 *** 作。
3焊钳与把线必须绝缘良好,连接牢固,更换焊条应戴好手套,在潮湿地点工作,应站在绝缘板或木板上。
4严禁在带压力的容器或管道上施焊,焊接带电的设备必须先切断电源。
5焊接贮存过易燃、易爆、有物品的容器或管道,必须干净,并将所有气孔、口打开。
6把线、地线,禁止与钢丝绳接触,更不得用钢丝绳或机电设备代替零线,所有地线接头,必须连接牢固。
7焊渣,采用电弧气刨清根时,应戴好防护眼镜或面罩,防止铁渣飞溅伤人。
8施焊场地周围应易燃、易爆物品,或进行覆盖隔离。
9必须在易燃易爆气体或液体扩散区施焊时,应经有关部门检测许可后,方可施焊。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)