以下为转贴:
计算两组变量之间相关系数的最好(即最容易也最准确)方法是用LISREL、AMOS等结构方程模型(SEM)。如果A1-A3是一个潜在因子、B1-B5是另一个潜在因子。SEM可以同时检验这两个潜在因子内部各观测变量是否相关以及两个因子之间是否相关。
如果你没学过SEM而只想在SPSS里做,有几种变通方法,但是都比较麻烦一点,其结果略有差别。
一、因子分析(EFA):先分别对A1-A3和B1-B5做因子分析、并从中生成两个因子、最后在相关分析中计算因子之间的相关系数。如果这两组变量(尤其是B1-B5)每组各自存在2个或更多的因子,就有问题了。(当然,如果这种情况发生,用其它方法同样也会有问题。)
二、General Linear Model(GLM):选"Multivariate", 将A1-A3放入"Dependent Variables"、B1-B5放入"Covariate(s)",执行后在“Test of Between-Subjects Effects"的表底部,找到对应于A1-A3的三个"R Squared" ,求其平均,再求其平方根(squared root),就是两组变量的相关系数了。
三、在MANOVA里启用其Canonical Correlation,SPSS菜单中已找不到MANOVA了,要写如下的syntax:
MANOVA a1 a2 a3 WITH b1 b2 b3 b4 b5
/DISCRIM ALL ALPHA(1)
/PRINT=SIG(EIGEN DIM)
其产生很多个表格,最后的“Analysis of Variance -- design 1:Estimates of effects for canonical variables”给出了类似GLM的R Squared,然后再求平方根
四、如果使用SPSS15,它提供了一个"Canonical Correlationssps"的syntax,可以调用,其结果的解读如上。
相关系数介于区间[-1,1]。当相关系数为-1,表示完全负相关,表明两项资产的收益率变化方向和变化幅度容完全相反。当相关系数为+1时,表示完全正相关,表明两项资产的收益率变化方向和变化幅度完全相同。当相关系数为0时,表示不相关。
r值的绝对值介于0~1之间。通常来说,r越接近1,表示x与y两个量之间的相关程度就越强,反之,r越接近于0,x与y两个量之间的相关程度就越弱。
扩展资料:
相关关系:当一个或几个相互联系的变量取一定的数值时,与之相对应的另一变量的值虽然不确定,但它仍按某种规律在一定的范围内变化。变量间的这种相互关系,称为具有不确定性的相关关系。
⑴完全相关:两个变量之间的关系,一个变量的数量变化由另一个变量的数量变化所惟一确定,即函数关系。
⑵不完全相关:两个变量之间的关系介于不相关和完全相关之间。
⑶不相关:如果两个变量彼此的数量变化互相独立,没有关系。
参考资料来源:百度百科-相关关系
样本相关系数是怎么得出的1在概率论计算中的应用
例1.若将一枚硬币抛n次,X表示n次试验中出现正面的次数,Y表示n次试验中出现反面的次数。计算ρXY。
解:由于X+Y=n,则Y=-X+n,根据相关系数的攻质推论,得ρXY = − 1。
例2.已知随机变量X、Y分别服从正态分布N(1,9),N(0,16)且X,Y的相关系数
设,求证X,Z相互独立。
证明:由已知得E(X)=1,D(X)=9,E(Y)= 0,D(Y) = 16
由于正态分布的随机变量的线性组合仍然服从正态分布,知Z是正态变量。
根据数学期望的性质有
根据方差的性质有得
由于 E(XY) = Cov(X,Y) + E(X)E(Y) = − 6,
E(X) = D(X) + [E(X)] = 10
ρXZ = 0,X,Z不相关。
由于正态随机变量的相互独立与互不相关等价,故X,Z相互独立。
因此,一般情况下两个随机变量不相关不一定相互独立。不相关仅指随机变量之间没有线性关系,而相互独立则表明随机变量之间互不影响,没有关系。
2在企业物流上的应用
例一种新产品上市。在上市之前,公司的物流部需把新产品合理分配到全国的10个仓库,新品上市一个月后,要评估实际分配方案与之前考虑的其他分配方案中,是实际分配方案好还是其中尚未使用的分配方案更好,通过这样的评估,可以在下一次的新产品上市使用更准确的产品分配方案,以避免由于分配而产生的积压和断货。表1是根据实际数据所列的数表。
通过计算,很容易得出这3个分配方案中,B的相关系数是最大的,这样就评估到B的分配方案比实际分配方案A更好,在下一次的新产品上市分配计划中,就可以考虑用B这种分配方法来计算实际分配方案。
3在聚类分析中的应用
例如果有若干个样品,每个样品有n个特征,则相关系数可以表示两个样品间的相似程度。借此,可以对样品的亲疏远近进行距离聚类。例如9个小麦品种(分别用A1,A2,,A9表示)的6个性状资料见表2,作相关系数计算并检验。
由相关系数计算公式可计算出6个性状间的相关系数,分析及检验结果见表3。由表3可以看出,冬季分蘖与每穗粒数之间呈现负相关(ρ = − 08982),即麦冬季分蘖越多,那么每穗的小麦粒数越少,其他性状之间的关系不显著。
相关系数怎么计算
两个变量x,y的相关系数
分子为(xi-x平均数)禒(yi-y平均数)多少个数,一起求和
分母为两个变量的标准差的乘积
excel中的相关系数是如何计算出来的
用统计函数中的CORREL函数,假设的两组数据为:A1:A10和B1:B10
在C1输入公式=CORREL(A1:A10,B1:B10)
相关系数就出来了,
以前我也不知有这个公式,我是用求标准差的办法设置的公式做了一个小模板,累死了,哈哈!
sperman相关系数怎么计算
相关系数γ =Σ ZxZy / (n-1)
相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值一般介于-1~1之间。相关系数不是等距度量值,而只是一个顺序数据。计算相关系数一般需大样本。
相关系数 又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。
相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。
γ>0为正相关,γ<0为负相关。γ=0表示不相关;
γ的绝对值越大,相关程度越高。
两个现象之间的相关程度,一般划分为四级:
如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。
相关系数的计算公式为:
其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值,
为因变量数列的标志值;■为因变量数列的平均值。
为自变量数列的项数。对于单变量分组表的资料,相关系数的计算公式为:
其中fi为权数,即自变量每组的次数。在使用具有统计功能的电子计算机时,可以用一种简捷的方法计算相关系数,其公式为:
使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、■、Σxi、Σyi、Σ■、Σxiy1、γ等数值,不必再列计算表
怎么看相关系数显著性检验表?
这里主要关注两个信息就够了,一个是n,那就是你的样本容量,比如n=100的话就是有100个被试,也即100组配对的数据。根据你的样本量找到检验表里对应的行。另一个就是根据你定的显著性水平来看显著性,一般005水平就够了,比如n=100显著性水平alpha=005时,相关系数显著性的临界值为0195,也就是说这个条件下,只要相关系数r的绝对值在0195以上,就可以认为此相关系数在005水平上显著。
另外,一般报告的原则是,报告统计量所达到的最高显著性水平,也就是如果你的数据达到001水平的显著,就不要说它在005水平显著了
如何计算相关系数
相关系数的计算公式见
怎样在excel中求相关系数
用CORREL函数可以求相关系数,格式为CORREL(array1,array2),返回单元格区域 array龚 和 array2 之间的相关系数。使用相关系数可以确定两种属性之间的关系。
相关系数多少算具有相关性?
相关系数的强弱仅仅看系数的大小是不够的。一般来说,取绝对值后,0-009为没有相关性,03-弱,01-03为弱相关,03-05为中等相关,05-10为强相关。但是,往往你还需要做显著性差异检验,即t-test,来检验两组数据是否显著相关,这在SPSS里面会自动为你计算的。
样本书越是大,需要达到显著性相关的相关系数就会越小。所以这关系到你的样本大小,如果你的样本很大,比如说超过300,往往分析出来的相关系数比较低,比如02,因为你样本量的增浮造成了差异的增大,但显著性检验却认为这是极其显著的相关。
一般来说,我们判断强弱主要看显著性,而非相关系数本身。但你在撰写论文时需要同时报告这两个统计数据。相关系数r用公式r=cover(x,y)/√(var[x]vay[y])计算。相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母r表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。
另外相关系数的相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。用统计函数中的CORREL函数,假设的两组数据为:A1:A10和B1:B10
在C1输入公式=CORREL(A1:A10,B1:B10)
相关系数就出来了,
以前我也不知有这个公式,我是用求标准差的办法设置的公式做了一个小模板,累死了,哈哈!
x与y的相关系数可以通过公式Cov(X,Y)/根号(Var[X]Var[Y]),其中Cov(X,Y)为X与Y的协方差,Var[X]为X的方差,Var[Y]为Y的方差。
x与y的相关系数:
1、当相关系数为0时,X和Y两变量无关系。
2、当X的值增大(减小),Y值增大(减小),两个变量为正相关,相关系数在000与100之间。
3、当X的值增大(减小),Y值减小(增大),两个变量为负相关,相关系数在-100与000之间。
相关系数的绝对值越大,相关性越强,相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)