凌阳单片机语音控制课程设计

凌阳单片机语音控制课程设计,第1张

我这有一篇网上下的,摘 要
本文主要介绍了目前常用的单片机(61和51单片机)对语音控制小车、红外遥控小车以及循迹小车的实现。本文说明大致方案设计和着重介绍了软件设计过程。
本设计以凌阳公司生产的61单片机为主控芯片制作了语音控制小车,实现了语音采集,语音播放以及特定人的语音识别功能。在此基础上实现了声音对小车的前进、倒车、左转、右转以及停车等状态的控制。大体上实现了语音控制小车的基本功能。
红外遥控及循迹小车是以51单片机为控制芯•片实现的。该部分由3个51系列单片机系统组成。其中,一个单片机(发送单片机)负责处理红外遥控程序,一个单片机(主控单片机)负责小车电机控制和相关信息处理,还有一个单片机(接收单片机)负责处理测温和液晶显示程序。三个单片机之间通过引线实现短距离的通信,以使它们可以相互配合,各司其职,使整个系统的实现和控制更为灵活方便。
以上系统的实现可以运用于特殊环境(人员不可达)下小车的远程控制和相关的智能 *** 作。同时也可运用于智能监控和智能决策等相关场合,为实现智能化 *** 作和管理提供方便。

数码管台古老了,你用这个吧,看着还稍微有点可以,代码和电路都给你了,没有做不出来的理由,有问题加我QQ11422376745

#include "d:\c51\reg51h"

#include "d:\c51\intrinsh"

sbit LCM_RS=P3^0;

sbit LCM_RW=P3^1;

sbit LCM_EN=P3^7;

#define BUSY   0x80              //常量定义

#define DATAPORT P1

#define uchar unsigned char

#define uint   unsigned int

#define L 50

uchar str0[16],str1[16],count;

uint speed;

unsigned long time;

void ddelay(uint);

void lcd_wait(void);

void display();

void initLCM();

void WriteCommandLCM(uchar WCLCM,uchar BusyC);

void STR();

void account();

/延时K1ms,12000mhz/

void int0_isr(void) interrupt 0         /遥控使用外部中断0,接P32口/

{

unsigned int temp;

time=count;

TR0=0;

temp=TH0;

temp=((temp << 8) | TL0);

TH0=0x3c;

TL0=0xaf;

count=0;

TR0=1;

time=time50000+temp;

}

void time0_isr(void) interrupt 1        /遥控使用定时计数器1 /

{

TH0 =0x3c;

TL0 =0xaf;

count++;

}

void main(void)

{

TMOD=0x01;                       /TMOD T0选用方式1(16位定时) /

IP|=0x01;                           /INT0 中断优先/

TCON|=0x11;                         /TCON  EX0下降沿触发,启动T0/

IE|=0x83;

TH0=0x3c;

TL0=0xaf;

initLCM();

WriteCommandLCM(0x01,1);    //清显示屏

for(;;)

{

account();

display();

}

}

void account()

{

unsigned long a;

if (time!=0)

{

a=L360000000/time;

}

speed=a;

}

void STR()

{

str0[0]='S';

str0[1]='p';

str0[2]='e';

str0[3]='e';

str0[4]='d';

str0[5]=' ';

str0[6]=(speed%100000)/10000+0x30;

str0[7]=(speed%10000)/1000+0x30;

str0[8]=(speed%1000)/100+0x30;

str0[9]='';

str0[10]=(speed%100)/10+0x30;

str0[11]=speed%10+0x30;

str0[12]='k';

str0[13]='m';

str0[14]='/';

str0[15]='h';

}

void ddelay(uint k)

{

uint i,j;

for(i=0;i<k;i++)

{

for(j=0;j<60;j++)

{;}

}

}

/写指令到LCD子函数/

void WriteCommandLCM(uchar WCLCM,uchar BusyC)

{

if(BusyC)lcd_wait();

DATAPORT=WCLCM;

LCM_RS=0;                   / 选中指令寄存器/

LCM_RW=0;               // 写模式

LCM_EN=1;

_nop_();

_nop_();

_nop_();

LCM_EN=0;

}

/写数据到LCD子函数/

void WriteDataLCM(uchar WDLCM)

{

lcd_wait( );            //检测忙信号

DATAPORT=WDLCM;

LCM_RS=1;               / 选中数据寄存器  /

LCM_RW=0;           // 写模式

LCM_EN=1;

_nop_();

_nop_();

_nop_();

LCM_EN=0;

}

/lcd内部等待函数/

void lcd_wait(void)

{

DATAPORT=0xff;     //读LCD前若单片机输出低电平,而读出LCD为高电平,则冲突,Proteus仿真会有显示逻辑

LCM_EN=1;

LCM_RS=0;

LCM_RW=1;

_nop_();

_nop_();

_nop_();

while(DATAPORT&BUSY)

{  LCM_EN=0;

_nop_();

_nop_();

LCM_EN=1;

_nop_();

_nop_();

}

LCM_EN=0;

}

/LCD初始化子函数/

void initLCM( )

{

DATAPORT=0;

ddelay(15);

WriteCommandLCM(0x38,0);    //三次显示模式设置,不检测忙信号

ddelay(5);

WriteCommandLCM(0x38,0);

ddelay(5);

WriteCommandLCM(0x38,0);

ddelay(5);

WriteCommandLCM(0x38,1);    //8bit数据传送,2行显示,57字型,检测忙信号

WriteCommandLCM(0x08,1);    //关闭显示,检测忙信号

WriteCommandLCM(0x01,1);    //清屏,检测忙信号

WriteCommandLCM(0x06,1);    //显示光标右移设置,检测忙信号

WriteCommandLCM(0x0c,1);    //显示屏打开,光标不显示,不闪烁,检测忙信号

}

/显示指定坐标的一个字符子函数/

void DisplayOneChar(uchar X,uchar Y,uchar DData)

{

Y&=1;

X&=15;

if(Y)X|=0x40;               //若y为1(显示第二行),地址码+0X40

X|=0x80;                    //指令码为地址码+0X80

WriteCommandLCM(X,0);

WriteDataLCM(DData);

}

/显示指定坐标的一串字符子函数/

void DisplayListChar(uchar X,uchar Y,uchar DData)

{

uchar ListLength=0;

Y&=0x01;

X&=0x0f;

while(X<16)

{

DisplayOneChar(X,Y,DData[ListLength]);

ListLength++;

X++;

}

}

void display()

{

STR();

DisplayListChar(0,0,str0);

DisplayListChar(0,1,str1);

}

智能小车的设计与制作
摘要:本课题组设计制作了一款具有智能判断功能的小车,功能强大。小车具有以下几个功能:自动避障功能;寻迹功能(按路面的黑色轨道行驶);趋光功能(寻找前方的点光源并行驶到位);检测路面所放置的铁片的个数的功能;计算并显示所走的路程和行走的时间,并可发声发光。作品可以作为高级智能玩具,也可以作为大学生学习嵌入式控制的强有力的应用实例。
作品以两电动机为主驱动,通过各类传感器件来采集各类信息,送入主控单元AT89S52单片机,处理数据后完成相应动作,以达到自身控制。电机驱动电路采用高电压,高电流,四通道驱动集成芯片L293D。其中避障采用红外线收发来完成;铁片检测部分采用电感式接近开关LJ18A3-8-Z/BX检测;黑带检测采用红外线接收二极管完成;趋光部分通过3路光敏二极管对光源信号的采集,再经过ADC0809转化为数字信号送单片机处理判别方向。由控制单元处理数据后完成相应动作,实现了无人控制即可完成一系列动作,相当于简易机器人。
关键字:智能控制 蔽障 红外线收发 寻迹行驶 趋光行驶
1.总体方案论证与比较
方案一:采用各类数字电路来组成小车的控制系统,对外围避障信号,黑带检测信号,铁片检测信号,各路趋光信号进行处理。本方案电路复杂,灵活性不高,效率低,不利于小车智能化的扩展,对各路信号处理比较困难。
方案二:采用ATM89S52单片机来作为整机的控制单元。红外线探头采用市面上通用的发射管与及接收头,经过单片机调制后发射。铁片检测采用电感式接近开关LJ18A3-8-Z/BX检测,黑带采用光敏二极管对光源信号采集,再经过ADC0809转化为数字信号送到单片机系统处理。此系统比较灵活,采用软件方法来解决复杂的硬件电路部分,使系统硬件简洁化,各类功能易于实现,能很好地满足题目的要求。
比较以上两种方案的优缺点,方案二简洁、灵活、可扩展性好,能达到题目的设计要求,因此采用方案二来实现。方案二的基本原理如图1所示。
图1 智能车运行基本原理图框图
避障部分采用红外线发射和接受原理。铁片检测采用电感式接近开关LJ18A3-8-Z/BX检测,产生的高低电平信号经过处理后,完成相应的记录数目,驱动蜂鸣器发声。黑带寻迹依靠安装在车底部左右两个光敏二极管对管来对地面反射光感应。寻光设计在小车前端安装3路(左、中、右)光敏电阻对光源信号采集,模拟信号经过ADC0809转化为数字信号送到MCU处理。记程通过在车轮上安装小磁块,再用霍尔管感应产生计数脉冲。记时由软件实现,显示采用普通七段LED。此系统比较灵活,采用软件方法来解决复杂的硬件电路部分,使系统硬件简洁化,各类功能易于实现
2.模块电路设计与比较
1) 避障方案选择
方案一:采用超声波避障,超声波受环境影响较大,电路复杂,而且地面对超声波的反射,会影响系统对障碍物的判断。
方案二:采用红外线避障,利用单片机来产生38KHz信号对红外线发射管进行调制发射,发射出去的红外线遇到避障物的时候反射回来,红外线接收管对反射回来信号进行解调,输出TTL电平。外界对红外信号的干扰比较小,且易于实现,价格也比较便宜,故采用方案二。
红外线发射接受电路原理图如图2所示。
采用红外线避障方法,利用一管发射另一管接收,接收管对外界红外线的接收强弱来判断障碍物的远近,由于红外线受外界可见光的影响较大,因此用250Hz的信号对38KHz的载波进行调制,这样减少外界的一些干扰。 接收管输出TTL电平,有利于单片机对信号的处理。采用红外线发射与接收原理。利用单片机产生38KHz信号对红外线发射管进行调制发射,发射距离远近由RW调节,本设计调节为10CM左右。发射出去的红外线遇到避障物的时候反射回来,红外线接收管对反射回来信号进行解调,输出TTL电平。利用单片机的中断系统,在遇障碍物时控制电机并使小车转弯。由于只采用了一组红外线收发对管,在避障转弯方向上,程序采用遇障碍物往左拐方式。如果要求小车正确判断左转还是右转,需在小车侧边加多一组对管。外界对红外信号的干扰比较小,性价比高。 。调试时主要是调制发射频率为接收头能接收的频率,采用单片机程序解决。发射信号强弱的调节,由可调精密电阻调节。
图2 红外线发射接受电路原理图
2)检测铁片方案选择
方案一:采用电涡流原理自制的传感器,取才方便,但难以调试,输出信号也不可靠,成功率比较低,难以准确输出传感信息。
方案二:采用市面易购的电感式接近开关,本系统采用市面比较通用LJ18A3-8-Z/BX来完成铁片检测的任务。虽然电感式接近开关占的体积大,对本是可以接受,且输出信号较可靠,稳定性好,受外界的干扰小,故采用方案二。
检测铁片电路原理图如图3所示。
图3 检测铁片电路原理图

3)声音提示
方案一:采用单片机产生不同的频率信号来完成声音提示,此方案能完成声音提示功能,给人以提示的可懂性比较差,但在一定程度上能满足要求,而且易于实现,成本也不高,我们出自经费方面考虑,采用方案一。
方案二:采用DS1420可分段录放音模块,能够给人以直观的提示,但DS1420录放音模块价格比较高,也可以采用此方案来处理,但方案二性价比不如方案一。
4)黑带检测方案选择
方案一:采用发光二极管发光,用光敏二极管接收。由于光敏二极管受可见光的影响较大,稳定性差。
方案二:利用红外线发射管发射红外线,红外线二极管进行接收。采用红外线发射,外面可见光对接收信号的影响较小,再用射极输出器对信号进行隔离。本方案也易于实现,比较可靠,因此采用方案二。黑带检测电路图如图4所示。
输出信号进入74LS02。稳定性能得到提升。当小车低部的某边红外线收发对管遇到黑带时输入电平为高电平,反之为低电平。结合中断查询方式,通过程序控制小车往哪个方向行走。电路中的可调电阻可调节灵敏度,以满足小车在不同光度的环境光中能够寻迹。由于接收对管装在车底,发射距离的远近较难控制,调节可调电阻,发现灵敏度总是不尽人意,最后采用在对管上套一塑料管,屏蔽外界光的影响,灵敏度大幅提升。再是转弯的时间延迟短长控制。
图4 黑带检测电路图
3)计量路程方案
方案一:利用红外线对射方式,在小车的车轮开一些透光孔来计量车轮转过圈数,从而间接地测量路程。
方案二:利用霍尔元件来对转过的车轮圈数来计程,在车轮子上装小磁片,霍尔元件靠近磁片一次计程为车轮周长。此方案传感的信号强, 电路简单,但精度不高。
如果想达到一定的计量精度,用霍尔传感元件比较难以实现,因为在车轮上装一定量的小磁片会相互影响,而利用红外线对射方式不会影响各自的脉冲,可达到厘米的精度,因此采用方案一来实现。计量路程示意图见图5。
通过计算车轮的转数间接测量距离,利用了霍尔元件感应磁块产生脉冲的原理,再对脉冲进行计数。另可采用红外线原理提高记程精度,其方法为在车轮均匀打上透光小孔,当车轮转动时,红外光透射过去,不断地输出脉冲,通过单片机对脉冲计数,再经过一个数据的处理过程,这样就可把小车走过的距离计算出来,小孔越多,计数越精密。
图 5 计量路程示意图
3)智能车驱动电路
方案一:采用分立元件组成的平衡式驱动电路,这种电路可以由单片机直接对其进行 *** 作,但由于分立元件占用的空间比较大,还要配上两个继电器,考虑到小车的空间问题,此方案不够理想。
方案二:因为小车电机装有减速齿轮组,考虑不需调速功能,采用市面易购的电机驱动芯片L293D,该芯片是利用TTL电平进行控制,对电机的 *** 作方便,通过改变芯片控制端的输入电平,即可以对电机进行正反转 *** 作,很方便单片机的 *** 作,亦能满足直流减速电机的要求。智能车驱动电路实现如图6所示。
图6 智能车驱动电路
小车电机为直流减速电机,带有齿轮组,考虑不需调速功能,采用电机驱动芯片L293D。L293D是著名的SGS公司的产品。为单块集成电路,高电压,高电流,四通道驱动,设计用来接收DTL或者TTL逻辑电平,驱动感性负载(比如继电器,直流和步进马达),和开关电源晶体管。内部包含4通道逻辑驱动电路。其额定工作电流为1A,最大可达15A,Vss电压最小45V,最大可达36V;Vs电压最大值也是36V,经过实验,Vs电压应该比Vss电压高,否则有时会出现失控现象。表1是其使能、输入引脚和输出引脚的逻辑关系。
表1 引脚和输出引脚的逻辑关系
EN A(B) IN1(IN3) IN2(IN4) 电机运行情况
H H L 正转
H L H 反转
H 同IN2(IN4) 同IN1(IN3) 快速停止
L X X 停止
L293D可直接的对电机进行控制,无须隔离电路。通过单片机的I/O输入改变芯片控制端的电平,即可以对电机进行正反转,停止的 *** 作,非常方便,亦能满足直流减速电机的大电流要求。调试时在依照上表,用程序输入对应的码值,能够实现对应的动作,调试通过。
3) 寻找光源功能
方案一:在小车前面装上几个光电开关,通过不同方向射来的光使光电开关工作,从而对小车行驶方向进行控制,根据光电开关特性,只有当光达到一定强度时才能够导通,因此带有一定的局限性。
方案二:在小车前面装上参数一致的光敏二极管或者光敏电阻,再通过A/D转换电路转换成数字量送入单片机,单片机再对读入的几路数据进行存储、比较,然后发出命令对外围进 *** 作。对方案一、二进行比较,方案二硬件稍为复杂,但能够对不同强度的光进行采集以及比较, *** 作灵活,所以采用方案二。
寻找光源电路图如图7所示。
图7 寻找光源电路图
3)显示部分
方案一:采用LCD显示,用单片机可实现显示数据,但显示亮度和字体大小在演示时不尽人意,价格也比较昂贵。
方案二:采用LED七段数码管,采用经典电路译码和驱动,电路结构简单,并且可以实现单片机I/O口的并用,显示效果直观,明亮,调试容易。故采用LED数码管显示。
4)显示电路如图8所示。
图8 显示电路
3 系统原理及理论分析
1) 单片机最小系统组成
单片机系统是整个智能系统的核心部分,它对各路传感信号的采集、处理、分析及对各部分整体调整。主要是组成是:单片机AT89S52、模数转换芯片ADC0809、小车驱动系统芯片L293D、数码管显示的译码芯片74LS47、74LS138及各路的传感器件。
2)避障原理
采用红外线避障方法,利用一管发射另一管接收,接收管对外界红外线的接收强弱来判断障碍物的远近,由于红外线受外界可见光的影响较大,因此用250Hz的信号对38KHz的载波进行调制,这样减少外界的一些干扰。 接收管输出TTL电平,有利于单片机对信号的处理。
3)计程原理
通过计算车轮的转数间接测量距离,在车轮均匀打上透光小孔,当车轮转动时,红外光透射过去,不断地输出脉冲,通过单片机对脉冲计数,再经过一个数据的处理过程,这样就可把小车走过的距离计算出来。
4)黑带检测原理
利用光的反射原理,当光线照射在白纸上,反射量比较大,反之,照在黑色物体上,由于黑色对光的吸收,反射回去的量比较少,这样就可以判断黑带轨道的走向。由于各路传感器会对单片机产生一定的干扰,使信号发生错误。因此,采用一级射极输出方式对信号进行隔离,这样系统对信号的判断就比较准确。
4 系统程序设计
用单片机定时器T0产生38KHz的方波,再用定时器T1产生250Hz的方波对38KHz方波进行调制。为了提高小车反应灵敏度,对红外线接收信号及黑带检测信号都采用中断法来处理。用定时方法对铁片检测、计量路程、倒车、拐弯及数码管动态扫描进行处理。
主程序流程图见图9,各子程序图见图10、图11、图12。
图9 主程序流程图
图 10 外部中断0服务子程序
图 11 外部中断1服务子程序
图12 定时器1中断子程序
6.调试及性能分析
整机焊接完毕,首先对硬件进行检查联线有无错误,再逐步对各模块进行调试。首先写入电机控制小程序,控制其正反转,停机均正常。加入避障子程序,小车运转正常,调整灵敏度达最佳效果。加入显示时间子程序,显示正常。铁片检测依靠接近开关,对检测信号进行处理并实时显示和发出声光信息,无异常状况。路程显示部分是对霍尔管脉冲进行计数,为了尽量达到精确,车轮加装小磁片。接着对黑带检测模块调试,发现有时小车会跑出黑带,经判断是因为红外线收发对管灵敏度不高,调整灵敏度后仍然达不到满意效果,疑是受环境光影响,利用塑料套包围红外线收发后问题解决。趋光电路主要由三个光敏电阻构成,调整三个光敏电阻的角度同时测试软件,以最佳效果完成趋光功能。
整机综合调试,上电后对系统进行初始化,接着控制电机使小车向前行驶,突然发现系统即刻进入外部中断1,重复多次测试,结果都是自动进入该中断。推断是由刚上电时电机起动所引起,为了避免上电瞬间的影响,在启动小车后延时几毫秒,再开外部中断,结果问题解决。允许的话应采用双电源供电,即电机和电路应分开供电,L293D与单片机之间采用隔离信号控制。这样就不会出现小车启动时程序出错和数码管显示闪动的问题。在计程精度上,可用红外线原理获得较高精度。
7.结论
通过各种方案的讨论及尝试,再经过多次的整体软硬件结合调试,不断地对系统进行优化,智能小车能够完成各项功能到达车库。
8.参考文献
《单片机应用技术》
《周立功单片机》
《单片机原理与应用》
《8051单片机程序设计与实例》
《MCS-51单片机实验指导》

17. 99秒马表设计
1. 实验任务
(1. 开始时,显示“00”,第1次按下SP1后就开始计时。
(2. 第2次按SP1后,计时停止。
(3. 第3次按SP1后,计时归零。
2. 电路原理图

图4171
3. 系统板上硬件连线
(1. 把“单片机系统”区域中的P00/AD0-P07/AD7端口用8芯排线连接到“四路静态数码显示模块”区域中的任一个a-h端口上;要求:P00/AD0对应着a,P01/AD1对应着b,……,P07/AD7对应着h。
(2. 把“单片机系统”区域中的P20/A8-P27/A15端口用8芯排线连接到“四路静态数码显示模块”区域中的任一个a-h端口上;要求:P20/A8对应着a,P21/A9对应着b,……,P27/A15对应着h。
(3. 把“单片机系统“区域中的P35/T1用导线连接到”独立式键盘“区域中的SP1端口上;
4. 程序框图
主程序框图
T0中断服务程序框图

图4172
5. 汇编源程序
TCNTA EQU 30H
TCNTB EQU 31H
SEC EQU 32H
KEYCNT EQU 33H
SP1 BIT P35
ORG 00H
LJMP START
ORG 0BH
LJMP INT_T0
START: MOV KEYCNT,#00H
MOV SEC,#00H
MOV A,SEC
MOV B,#10
DIV AB
MOV DPTR,#TABLE
MOVC A,@A+DPTR
MOV P0,A
MOV A,B
MOV DPTR,#TABLE
MOVC A,@A+DPTR
MOV P2,A
MOV TMOD,#02H
SETB ET0
SETB EA
WT: JB SP1,WT
LCALL DELY10MS
JB SP1,WT
INC KEYCNT
MOV A,KEYCNT
CJNE A,#01H,KN1
SETB TR0
MOV TH0,#06H
MOV TL0,#06H
MOV TCNTA,#00H
MOV TCNTB,#00H
LJMP DKN
KN1: CJNE A,#02H,KN2
CLR TR0
LJMP DKN
KN2: CJNE A,#03H,DKN
MOV SEC,#00H
MOV A,SEC
MOV B,#10
DIV AB
MOV DPTR,#TABLE
MOVC A,@A+DPTR
MOV P0,A
MOV A,B
MOV DPTR,#TABLE
MOVC A,@A+DPTR
MOV P2,A
MOV KEYCNT,#00H
DKN: JNB SP1,$
LJMP WT
DELY10MS:
MOV R6,#20
D1: MOV R7,#248
DJNZ R7,$
DJNZ R6,D1
RET
INT_T0:
INC TCNTA
MOV A,TCNTA
CJNE A,#100,NEXT
MOV TCNTA,#00H
INC TCNTB
MOV A,TCNTB
CJNE A,#4,NEXT
MOV TCNTB,#00H
INC SEC
MOV A,SEC
CJNE A,#100,DONE
MOV SEC,#00H
DONE: MOV A,SEC
MOV B,#10
DIV AB
MOV DPTR,#TABLE
MOVC A,@A+DPTR
MOV P0,A
MOV A,B
MOV DPTR,#TABLE
MOVC A,@A+DPTR
MOV P2,A
NEXT: RETI
TABLE: DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07H,7FH,6FH
END
6. C语言源程序
#include <AT89X51H>
unsigned char code dispcode[]={0x3f,0x06,0x5b,0x4f,
0x66,0x6d,0x7d,0x07,
0x7f,0x6f,0x77,0x7c,
0x39,0x5e,0x79,0x71,0x00};
unsigned char second;
unsigned char keycnt;
unsigned int tcnt;
void main(void)
{
unsigned char i,j;
TMOD=0x02;
ET0=1;
EA=1;
second=0;
P0=dispcode[second/10];
P2=dispcode[second%10];
while(1)
{
if(P3_5==0)
{
for(i=20;i>0;i--)
for(j=248;j>0;j--);
if(P3_5==0)
{
keycnt++;
switch(keycnt)
{
case 1:
TH0=0x06;
TL0=0x06;
TR0=1;
break;
case 2:
TR0=0;
break;
case 3:
keycnt=0;
second=0;
P0=dispcode[second/10];
P2=dispcode[second%10];
break;
}
while(P3_5==0);
}
}
}
}
void t0(void) interrupt 1 using 0
{
tcnt++;
if(tcnt==400)
{
tcnt=0;
second++;
if(second==100)
{
second=0;
}
P0=dispcode[second/10];
P2=dispcode[second%10];
}
}


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12775021.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存