通话有回音的原因:
通话回音指的是通话时受话器中可以听到自己的声音,一般是网络原因导致的,对方手机或电话机、本机故障也有可能导致回音。
因为电磁波的传输通过多种途径到达手机,其中包括各种反射或中转的信号。由于第一个路径到达的信号最强,所以手机总是对这个信号进行处理。
而对通过其它路径到达手机的延迟信号,手机会通过一定的算法进行消除,然而,有时候反射的路径比较多,信号又比较强,手机很难通过一个固定的算法消除,这样就形成了回声。
回音的问题一般是手机结构问题比较多,就是打电话时听筒的声音串到mic形成一个回路造成的,简单的办法是调节通话时的音量,调到既不影响你接听的声音也不会出现回音就ok 如还不行就需要到懂行的维修店弄下 具体 *** 作如下:功能表→工具→通讯记录→选项→设置→显示通话时间→否
如果打固定电话,那么是固定电话用户线的二四线转换造成的回音;
2如果打移动电话,那么是无线编码器的时延造成的回音;
3手机本身的设计有问题。通常情况下,由手机本身引起的回音问题大都因为收发环路的隔离度不好,与机身的密封无太大关联。这很有可能是手机自身的设计问题,例如一些手机的听筒声音过于洪亮,同时麦克风的灵敏度又过高,令声音造成回传从而引起回音。如果你的手机在通话时长期存在回音,很有可能就是这种问题。
解决办法
1手机先关机。 然后用一根细铁丝插出耳机孔内。铁丝另一端握在手里。另一支手摸着自来水管。五秒后再开机试试。
注:铁丝插到耳孔内的时候不要太用力。以免把手机内的元器件插坏了。该方法只能针对手机静电太大引起的回音。
如何解决手机打电话时产生的回音问题
2关闭降噪功能,一部分手机关闭降噪之后回声确实没了。
3很多关闭降噪依然有回声的手机,可以尝试堵住耳机孔旁边的小孔,有部分手机堵住后回声没有了。可以试试。
4有些是信号不好产生的回音。去一个空旷的地方试试看看不是信号的问题。如果是信号的问题。可更换运营商。
5手机本身设计的问题。只能返厂维修。
若手机出现通话回音,建议按照以下方法 *** 作:
1、让对方点击他手机通话界面上的“静音”按钮,即关闭对方的麦克风,如果回音消失,说明是对方手机的问题;
2、更换时间地点联系人进行尝试,排除网络原因;
3、手机不是最新版本,升级到最新版本看是否有优化;
4、若仍未解决,请你携带购机发票、保修卡和机器送到OPPO客户服务中心检测,由专业工程师为你解决。1摄像机或者在这里称为监控摄像机是视频监控中的核心设备,对于视频监控工程其他设备可以不使用,但摄像机是必须的,监控摄像机从外形可以分为q机、半球摄像机、智能球型摄像机,从功能上分可以分为红外摄像机、一体化摄像机、红外防水机、高速球、中速球、恒速球、普通摄像机,其他的还有低照度,宽动态等划分方式。目前监控摄像机主要还是使用sony和sharp芯片的摄像机。监控摄像机正向高清晰度发展,目前的主流还是420电视线的摄像机,不过480线及以上机型也越来越得到广大工程商的青睐。
2 电子监控系统是设计用来24小时连续工作的,而在最终用户端的安装质量将直接影响系统的运行性能与寿命。因此,必须注意到下列对监控系统安装的基本要求。 1、 浪涌抑制/线路保护在系统电源输入处配置浪涌保护器是所有成功系统的共同特性。尽管很多安保系统都使用了UPS,但是需要注意的是并非所有的UPS都带有内置的浪涌保护。同样的,视频和数据线路也需要加以保护。2、 电缆的质量另外需要关注的是CCTV同轴电缆的质量,RG59U,RG6和RG11均要求是100%铜芯,及95%的铜质编织屏蔽层。线路环接的最大电阻不能超过15欧姆。3、 地环回路正确的接地可以把地环回路的影响降低至最小。不同接地之间的电压差不应超过100mVAC(测量断开的同轴电缆和屏蔽层和设备后面BNC接地端之间的压差)。4、 干扰/EMI,RFI暴露在任何干扰环境下都会降低视频质量并影响系统的整体性能及产品的可靠性。避免设备暴露无遗在大型马达如电梯,水泵和荧光柱,以及各种高功率的无线电设备环境中。5、 控制设备的工作环境安保系统的设备均要求安装在清洁的空调室内,并要求安装在19"的标准机架上,设备之间应留有适当的空间,需使用强迫通风的风扇。6、 数字视频录像机的正确备份步骤如果硬盘录像机送修或升级,就有可能丢失原有的程序以及硬盘中所有的信息。其维修中心不能保证可以恢复这些数据。硬盘备份是每一个用户的职责,在此,我们建议用户对硬盘作定期备份。请让所有的用户清楚地意识到不作备份可能会引发的潜在问题。 如果没有严格遵守上述基本原则中的任一项或多项,皆会危及监控系统的完整性。正确的安装将保证系统的正常运行和增加用户的信任度。最关键的是,产品保修只适用于在正确安装条件下的产品。
3在一个监控系统进入调试阶段、试运行阶段以及交付使用后,都有可能出现这样那样的故障现象,这些故障现象或是不能正常运行,或是系统达不到设计要求的技术指标;或是整体性能和质量不理想,出现所谓的一些“软毛病”。这些问题对于一个监控工程项目来说,特别是对于一个复杂的、大型的监控工程不说,是在所难免的。出现问题后,设法解决这些问题,是工程技术人员的义务和责任。在一个监控系统中,问题的出现多发生在调试和试运行阶段。已经过试运行并验收交付使用的系统,一般来说,短时期内不应该出现问题。即使投入使用的系统出现了问题,往往也是发生在设备质量或施工质量(特别是传输部分的施工质量)方面。下面就一些较为常见的故障,提供给读者作为参考。
一、 由设备和部件引起或反映出的故障及解决方法
在设备(或部件)安装之前均应按要求进行调试、通电实验等工作。但尽管如此,由于安装过程中的某些原因,造成设备(或部件)出现问题也是常见的。
A、电源的不正确引发的设备故障。电源不正确大致有如下几种可能:供电线路或供电电压不正确、功率不够(或某一路供电线路的线径不够,降压过大等)、供电系统的传输线路出现短路、断路、瞬间过压等。特别是因供电错误或瞬间过压导致设备损坏的情况时有发生。
B、 由于某些线路,特别是与设备相接的线路处理不好,产生断路、短路、线间绝缘不良、误接线等导致设备(或部件)的损坏、性能下降或设备本身并未因此损坏,但反映出的现象是出在设备或部件身上。由于某些设备(如带三可变镜头的摄像机及云台)的连线有很多条,往往处理不好,就会出现上述问题。特别是某些接插件的质量不良,连线的工艺不好,更是出现问题的常见原因。在这种情况下,应根据故障现象冷静地进行分析,判断在若干条线路上是由于哪些线路的连接有问题才产生那种故障现象。这样就会把出现问题的范围缩小了。比如,一台带三可变镜头的摄像机图像信号是正常的,但镜头无法控制,就不必再检查视频输出线,而只要检查镜头控制线就行了。另外,接插件方面,特别是BNC 型接头,对焊接工艺、视频线的连接安装工艺要求都非常高,如处理不当,即使调试和试运行阶段没有出现问题,但运行一段后就出现问题了。特别值得指出的是,带云台的摄像机由于全方位的运动,时间长了,导致连线的脱落、挣断是常见的。因此,要特别注意这种情况的设备与各种线路的连接应符合长时间运转的要求。
C、设备或部件本身的质量问题。一般来说,经过认真选择的已商品化的设备或部件是不应该出现质量问题的。即使出现问题,也往往发生在系统已交付使用并运行了相当长时间之后。
除了上面所说的产品自身质量问题外,最常见的是由于对设备调整不当产生的问题。比如摄像机后截距的调整是个要求非常细致的精确的工作。如不认真调整,就会出现聚焦不好或在三可变镜头的各种 *** 作 时发生散焦等问题。另外摄像机上一些开关和调整旋钮的位置是否正确、是否符合系统的技术要求、解码器编码开关或其它可调部位设置的正确与否都会直接影响设备本身的正常使用或影响整个系统的正常性能。
D、设备(或部件)与设备(或部件)之间的连接不正确产生的问题。这方面的问题,大致会发生在以下几个方面:
a、阻抗不匹配,如视频接在一个阻抗为高阻的监视器上,就会出现图像很亮、字符抖动或出现字符时有时无。
b、通信接口或通信方式不对。这种情况往往发生在控制主机与解码器或控制键盘等有通信控制关系的设备之间。这多半是由于选用的控制主机与解码器或控制键盘等不是一个厂家的产品所造成的。一般来说,不同的厂家所采用的通信方式或传输的控制码是不同的。所以,对于主机、解码器、控制键盘等应选用同一厂家的产品。
c、驱动能力不够或超出规定的设备连接数量。比如,控制主机所对应的主控键盘和副控键的数量是有规定的。超过规定数量后将导致系统工作不正常。解码器云台工作电源功率比实际云台低,就驱动不了云台。
二、 传输系统出现故障的分析与解决方法
电视监控的传输系统,常用的还是以视频传输为主。限于篇幅,下面仅就视频传输方式下出现的故障现象进行分析并提出一些解决方法。
A、视频传输中,最常见的故障现象是50 周的工频干扰。表现形式是在监视器的画面上出现了一条黑杠或白杠,并且向上或向下慢慢滚动。这种现象多半是由系统产生了地坏路而引入了50 周的工频干扰(交流电的干扰)所造成的。需要一提的是,有时由于摄像机或控制主机(矩阵切换器)的电源性能不良(或局部损坏)也会出现这种故障现象(有时也会出现二条黑杠或白杠),因此,在分析这类故障现象时,要分清产生故障的两种不同原因。
要分清是电源的问题还是地环路的问题,一种简易的方法是,在控制主机上,就近只接入一台电源没有问题的摄像机输出信号,如果在监视器上没有出现上述的干扰现象,则说明控制主机无问题。接下来可用一台便携式监视器就近接在前端摄像机的视频输出端,并一台台摄像机逐个检看,以便查找有否因电源出现问题而造成干扰的摄像机。如有,则进行处理。如无,则干扰是由地环路等其它原因造成的。
B、监视器上出现木纹状的干扰。这种干扰的出现,轻微时不会淹没正常图像,而严重时图像就无法观看了(甚至破坏同步)。这种故障现象产生的原因较多也较复杂。大致有如下几种原因:视频传输线的质量不好,特别是屏蔽性能差(屏蔽网不是质量很好的铜线网,或屏蔽网过稀而起不到屏蔽作用)。与此同时,这类视频线的线电阻过大,因而造成信号产生较大衰减也是加重故障的原因。此外,这类视频线的特性阻抗不是75Ω,以及分布参数超出规定也是产生故障的原因之一。
这种故障原因,既难判断,又因判断后由于已施工完毕(布线已完毕),故难以用换线等办法解决。因此,选用符合标准和要求的视频电缆是必须事先保证的。决不能因考虑省钱而购买质量差的视频电缆线,否则后患无穷。由于上述的干扰现象不一定就是视频线不良而产生的故障,所以判断是要准确和慎重。只有当排除了其它可能后,才能从视频线不良的角度去考虑。判断的方法是,在排除其它可能造成这种故障的原因之后,有条件的话,把剩余的这种视频电缆(如无剩余,则只好在系统中截取一段这样的电缆)送到检验部门去检测。检测结果不合格时,则可确定是电缆质量问题了。如果真是电缆质量问题,最好的办法当然是把所有的这种电缆全部换掉,换成符合要求的电缆,这是彻底解决问题的最好办法。在干扰不十分严重的情况下,可以试着采取通过净化电源,在线连接的UPS向整个系统供电的方式,往往能减轻或基本消除干扰。但这种方法有时会因系统周围空间信号情况的不同而效果不明显或有时管用、有时不管用。由于供电系统的电源不“洁净”而引起的。这里所指的电源不“洁净”,是指在正常的电源(50 周的正弦波)上叠加有干扰信号。而这种电源上的干扰信号,多来自本电网中使用可控硅的设备。特别是大电流、高电压的可控硅设备,对电网的污染非常严重,这就导致了同一电网中的电源不“洁净”。比如本电网中有大功率可控硅调频调速装置,可控硅整流装置、可控硅交直流变换装置等等,都会对电源产生污染。这种情况的解决方法比较简单,只要对整个系统采用净化电源或在线UPS 供电就基本上可以得到解决。
C、系统附近有很强的干扰源。这可以通过调查和了解而加以判断。如果属于这种原因,解决的办法是加强摄像机的屏蔽,以及对视频电缆线的管道进行接地处理等。c、由于视频电缆线的芯线与屏蔽网短路、断路造成的故障。这种故障的表现形式是在监视器上产生较深较乱的大面积网纹干扰,以至图像全部被破坏,形不成图像和同步信号。这种情况多出现在BNC 接头或其它类型的视频接头上。只要认真逐个检查这些接头,就可以解决问题。
这类故障现象还有一点是容易判断的,即这种故障现象出现时,往往不会是整个系统的各路信号均出问题,而仅仅出现在那些接头不好的路数上。
D、由于传输线的特性阻抗不匹配引起的故障现象。这种现象的表现形式是在监视器的画面上产生的若干条间距相等的竖条干扰,干扰信号的频率基本上是行频的整数倍。这是由于视频传输线的特性阻抗不是75Ω而导致阻抗失配造成的。如果用示波器观看被干扰图像的波形时,会发现在行同步头的后肩上,叠加有幅度较高的行频谐波振荡波形,干扰就是由此引起的。通过对波形的分析和对视频电缆的定量测量,还会发现这种阻抗不符合要求的视频电缆线,其分布参数也是不符合要求的,实际上这也是阻抗失配的原因之一。因此,也可以说,产生这种干扰现象是由视频电缆的特性阴抗和分布参数都不符合要求综合引起的。这种问题的解决一般靠“始端串接电阻”或“终端并接电阻”的方法去解决。这里值得注意的是,在视频传输距离很短时(一般为150 米以内),使用上述阻抗失配和分布参数过大的视频电缆不一定会出现上述的干扰现象。因此,在一个传输距离远近相差很大的系统中,分析这种故障现象时不要受到短距离无干扰的迷惑。
解决上述问题的根本办法是在选购视频电缆时,一定要保证质量。必要时应对电缆进行抽样检测。
E、由于传输线引入的空间辐射干扰。这种干扰现象的产生,多半是因为在传输系统、系统前端或中心控制室附近有较强的、频率较高的空间辐射源。这种情况的解决办法一个是在系统建立时,应对周边环境有所了解,尽量设法避开或远离辐射源;另一个办法是当无法避开辐射源时,对前端及中心设备加强屏蔽,对传输线的管路采用钢管并良好接地。
三、其它故障现象
A、云台的故障。一个云台在使用后不久就运转不灵或根本不能转动,是云台常见的故障。这种情况的出现除去产品质量的因素外,主要是以下各种原因造成的:
只允许将摄像机正装(即摄像机坐在云台转台的上部)的云台,在使用时采用了吊装的方式(即将摄像机装在云台转台的下方)。在这种情况下,吊装方式导致了云台运转负荷加大,故使用不久就会导致云台的传动机构损坏,甚至烧毁
电机。
摄像机及其防护罩等总重量超过云台的承重。特别是室外使用的云台,往往防护罩的重量过大,常会出现云台转不动(特别是垂直方向转不动)的问题。室外云台因环境温度过高、过低、防水、防冻措施不良而出现故障甚至损坏。
B、距离过远时, *** 作键盘无法通过解码器对摄像机(包括镜头)和云台进行遥控。这主要是因为距离过远时,控制信号衰减太大,解码器接受到的控制信号太弱引起的。这时应该在一定的距离上加装中继盒以放大整形控制信号。
C、监视器的图像对比度太小,图像淡。这种现象如不是控制主机及监视器本身的问题,就是传输距离过远或视频传输线衰减太大。在这种情况下,应加入线路放大和补偿的装置。
D、图像清晰度不高、细节部分丢失、严重时会出现彩色信号丢失或色饱和度过小。这是由于图像信号的高频端损失过大,以致3MHz以上频率的信号基本丢失造成的。这种情况或因传输距离过远,而中间又无放大补偿装置;或因视频传输电缆分布电容过大;或因传输环节中在传输线的芯线与屏蔽线间出现了集中分布的等效电容造成的。
E、色调失真。这是在远距离的视频基带传输方式下容易出现的故障现象。主要原因是由传输线引起的信号高频段相移过大而造成的。这种情况应加相位补偿器。
F、 *** 作键盘失灵。这种现象在检查连线无问题时,基本上可确定为 *** 作键盘“死机”造成的。键盘的 *** 作作用说明上,一般都有解决“死机”的方法,例如“整机复位”等方式,可用此方法解决。如无法解决,就可能是键盘本身损坏了。
G、主机对图像的切换不干净。这种故障现象的表现是在选切后的画面上,叠加有其它画面的干扰,或有其它图像的行同步信号的干扰。这是因为主机的矩阵切换开关质量不良,达不到图像之间隔离度的要求所造成的。如果采用的是射频传输系统,也可能是系统的交扰调制和相互调制过大而造成的。
一个大型的、与防盗报警联动运行的电视监控系统,是一个技术含量高、构成复杂的系统。各种故障现象虽然都有可能出现,但只要把好所选用的设备和器材的质量关,严格按标准和规范施工,一般是不会出现大问题的。即使出现问题,只要冷静分析和思考,“对症下药”,不盲目地大拆大卸,是会较快解决问题的。
H、通信不良故障
表现为受控的云台或电动镜头有时可正常动作,有时则不能(或延时)动作,或是动作之后停不住,这主要原因是通信线路有问题。在确认接线无误、线路无误的情况下,检查解码器上RS-485 通信终端匹配电阻(120Ω)。或断开主机接口和最远端匹配电阻,用万用表测量单个通信片的端脚直流电阻RD 及整个系统的通信端口的直流电阻R2,并与理论计算进行比较(R2=R0/n,其中n 为整个系统中所并接的解码器的数量),如果差异过大,则可认定是通信芯片有问题,并通过逐点排除法找到有问题的芯片。如果通信线路有很多支路,可以断开各支路来判断通信故障的大概范围。你好,TD-LTE组网干扰分内部干扰和外部干扰,内部干扰包括同频组网干扰和异频干扰,外部干扰又包括系统间干扰及其它随机干扰。1系统内干扰TD-LTE的组网包括同频和异频两种方式,对于同频组网,整个系统覆盖范围内的所有小区可以使用相同的频带为本小区内的用户提供服务,因此频谱效率高。但是对各子信道之间的正交性有严格的要求,否则会导致干扰。对于异频组网,由于频率的不同产生了一定的隔离度,但是仍然需要进行合理的频率规划,确保网络干扰最小,同时由于受限于频带资源,所以存在着干扰控制与频带使用的平衡问题。11同频组网111小区内干扰由于OFDM的各子信道之间是正交的,这种特点决定了小区内干扰可以通过正交性加以克服。如果由于载波频率和相位的偏移等因素造成子信道间的干扰,可以在物理层通过采用先进的无线信号处理算法使这种干扰降到最低。因此,一般认为OFDMA系统中的小区内干扰很小。112小区间干扰对于小区间的同频干扰,可以采用干扰抑制技术,主要包括干扰随机化、干扰消除和干扰协调。干扰随机化和干扰消除是一种被动的干扰抑制技术,对网络的载干比并无影响。干扰随机化通过比如加扰、交织,跳频、扩频、动态调度等方式,使系统在时间和频率两个维度的干扰平均化。干扰消除利用干扰的有色特性,对干扰进行一定程度的抑制,即:通过UE的多个天线对空间有色干扰进行抑制。波束成形在空间维度,通过估计干扰的空间谱特性,进行多天线抗干扰合并;在频率维度,通过估计干扰的频谱特性,优化均衡参数,进行单天线抑制,如IRC。干扰协调对小区边缘可用的时频资源作一定的限制,正交化或半正交化,是一种主动的控制干扰技术,理想的协调是分配正交的资源,但这种资源通常有限;非理想的协调可以通过控制干扰的功率,降低干扰。干扰协调主要分为静态ICIC、半静态ICIC以及动态ICIC。静态ICIC的核心是各小区的无线资源按照一定规则分配后固化使用。小区边缘用户使用整个可用频段的一部分,并且邻小区相互正交,用户全功率发送;小区中心用户可以使用整个可用频段,但降功率发送;动态ICIC是在静态ICIC的基础上通过eNodeB进行实时调度,在相邻小区间协调频率资源的使用,以达到抑制干扰目的,适应小区间负载不均匀的场景;小区边缘频带扩展时需要综合考虑邻区边缘频带的情况,防止发生冲突;12异频组网TD-LTE系统在本小区内不存在同频干扰,干扰主要来自于使用相同频率的邻小区。如果在服务小区与最相邻的小区之间保持异频,通过空间传播距离隔离同频小区,这样就能够尽可能的降低同频干扰。异频组网中相邻小区为了降低干扰,使用不同的频率,频谱效率相对于同频要差一些,但RRM算法简单,边缘速率相对于同频组网会高一些。因此,如果采用异频组网,需要进行合理的频率规划,确保网络干扰最小。同时,由于受限于频带资源,所以存在着干扰控制与频带使用的平衡问题。2系统间干扰目前,TD-LTE可以使用的频段包括1880~1920MHz(F频段)、2320~2370MHz(E频段)以及2570~2620MHz(D频段)。根据中国移动的规划,考虑到与TD-SCDMA网络共用的情况,F和D频段将用在室外,E频段将用在室内。因此在F/E频段存在与TD-SCDMA的干扰至于在F频段与DCS1800、CDMA2000的干扰则只需要保证一定的空间隔离度可以加以抑制。在分析前,我们先来了解一下系统间干扰分析的几个概念:1邻频干扰:如果不同的系统工作在相邻的频率,由于发射机的邻道泄漏和接收机邻道选择性的性能的限制,就会发生邻道干扰。2杂散辐射:由于发射机中的功放、混频器和滤波器等器件的非线性,会在工作频带以外很宽的范围内产生辐射信号分量,包括热噪声、谐波、寄生辐射、频率转换产物和互调产物等。当这些发射机产生的干扰信号落在被干扰系统接收机的工作带内时,抬高了接收机的噪底,从而减低了收灵敏度。3互调干扰:主要是由接收机的非线性引起的,后果也是抬高底噪,降低接收灵敏度。种类包括多干扰源形成的互调、发射分量与干扰源形成的互调和交调干扰。4阻塞干扰:阻塞干扰并不是落在被干扰系统接收带内的,但由于干扰信号过强,超出了接收机的线性范围,导致接收机饱和而无法工作。为了防止接收机过载,收信号的功率一定要低于它的1dB压缩点。2221 基本工作频带、带内平坦度
(1) 调节频谱分析仪为扫频输出状态,扫频信号输出端口(RF OUT)经衰减器A(衰减值应保证频谱仪经衰减后可以输出不使待测直放站输出饱和的信号Lin)连接到待测直放站的输入端口,待测直放站输出端口经衰减器B(衰减值应保证大于待测直放站最大输出功率与频谱仪最大输入功率的差值)连接到频谱仪输入端口(RF IN),如图所示:
(2)首先调测待测直放站。若待测直放站为宽带直放站,则设置待测直放站带宽的上下截至频率为GSM下行工作频带范围935和954MHz,中心频率为9445MHz。
(3)若待测直放站为载波选频直放站,而且选频模块数目不少于2个,则分别设置待测直放站其中两个选频模块的中心频率为GSM下行工作频带范围9352和954MHz。
(4)然后调测频谱仪的扫频输出信号。调频谱仪扫频信号信号输出的中心频率为9445MHz,扫频宽度为52MHz,调节其输出电平,使待测直放站输入端口处的信号电平为Lin。(在频谱仪自环的方式下调测输出扫频信号)
(5)将衰减器B的输出信号接入频谱仪的RF IN输入端口,观察测试结果。调频谱仪中心频率为9445MHz,分辨率宽度(RBW)为300KHz,扫频宽度(SPAN)、视频宽度(VBW)、扫描时间(SWT)、输入衰减(ATT)调适当,幅度刻度调到10dB/格,参考电平(REF)调到使屏幕上的信号幅度低于顶刻度5-10dB左右。
(6)对于宽带直放站,用频谱仪上的标记读出下降2dB的频点f1和f2即为被测直放站实际工作频带的上下截至频率;对于载波选频直放站,用频谱仪上的标记读出最低频处输出信号波形下降1dB的上截至频率f1和最高频处输出信号形下降1dB的下截至频率f2即为被测直放站实际工作频带的上下截至频率。(应符合11的要求)
(7)同时观测有效工作频带内的最大和最小电平之间的差值即为带内平坦度A dB(峰峰值)。(应符合12的要求)
(8)以上为对待测直放站下行工作频带的测试,将待测直放站的输入输出端口对调,并相应调节频谱仪的中心频率至8995 MHz,则可对待测直放站上行工作频带进行测试。
(9)测试完毕后,记录测试数据,将被测直放站的原有设置还原。
2226 接收信号功率
接收信号功率可以用频谱仪或者功率计(带功率计功能的site master s120)进行测试,下面以频谱仪为例介绍下行接收信号功率的测试方法。
(1) 把施主天线直接接到频谱仪的输入端口(RF IN),频谱仪应放在近待测直放站一端。
(2)调频谱仪中心频率为直放站下行中心频率9445MHz,扫频宽度(SPAN)为52MHz,分辨率宽度(RBW)为300KHz、视频宽度(VBW)、扫描时间(SWT)调适当。由于接收信号功率一般较弱,输入衰减(ATT)应尽量调小,幅度刻度调到10dB/格。
(2) 观测频谱仪上显示的信号波形,用频谱仪的标记读出信号波形的中心频率和信号波形的最大值(峰值)即接收信号的中心频率f0和信号功率Lin下(dBm)。(实际下行接收功率= Lin下+衰减总量)、(应符合设计文件的要求)
2227 输出信号功率
输出信号功率也可以用频谱仪或者功率计(带功率计功能的site master s120)进行测试,下面以频谱仪为例介绍下行输出信号功率的测试方法。
(1)待测直放站的输出端接上衰减器(衰减值应保证大于待测直放站最大输出功率与频谱仪最大输入功率的差值)后再接到频谱仪的输入端口(RF IN),频谱仪应放在近待测直放站一端。
(2)调频谱仪中心频率为直放站下行中心频率9445MHz,扫频宽度(SPAN)为52MHz,分辨率宽度(RBW)为300KHz、视频宽度(VBW)、扫描时间(SWT)、衰减(ATT)调适当。幅度刻度调到10dB/格,参考功率(REF)调到使屏幕上的信号幅度低于顶刻度5-10dB左右。
(3) 观测频谱仪上显示的信号波形,用频谱仪的标记读出信号波形的中心频率和信号波形的最大值(峰值)即输出信号的中心频率f0和信号功率Lout下(dBm)。(实际下行输出功率= Lout下+衰减总量)、(应符合设计文件的要求)
2226 增益
待测直放站的实际增益G= 输出信号功率Lout-接收信号功率Lin。(应符合设计文件的要求)
2223 带外抑制度
(1)测试连接方式与2221一致。
(2)将待测直放站增益调到最大,调频谱仪扫频信号信号输出的中心频率为9445MHz,扫频宽度为52MHz,调节其输出电平,使待测直放站输入端口处的信号电平为Lin。若待测直放站为载波选频直放站,而且选频模块数目不少于2个,则分别设置待测直放站其中两个选频模块的中心频率为GSM下行工作频带范围9352和954MHz。
(3)将衰减器B的输出信号接入频谱仪的RF IN输入端口,频谱仪的中心频率也调到f0,其他参数均调适当,从频谱仪上读出输出信号的带内信号电平Lo(dBm),然后在有效工作频带外100KHz、400KHz、600KHz、800KHz、1MHz、5MHz、频率点处读出相应的信号电平Lx。
(4)带外抑制度A = Lo – Lx(dB)。(应符合111的要求)
(6) 根据相同原理测试直放站上行带外抑制度。
(7) 测试完毕后,记录数据,将被测直放站的原有设置还原。
22241 上行噪声电平
(1)在待测直放站与施主天线之间加入一个环形器(或耦合器)。从上行方向看,待测直放站的上行输出信号直通到衰减器一端,而与施主天线端是隔离的。从下行方向看,施主天线的接收信号直通到待测直放站的输入端,而与衰减器一端是隔离的,连接方式如下图所示:(若加入的是耦合器,可以不加衰减器,则待测直放站接耦合器输入端,频谱仪直接接耦合器的耦合端,施主天线接耦合器的直通端)
施主天线 覆盖天线
(2)调频谱仪中心频率为直放站上行中心频率8995MHz,扫频宽度(SPAN)为30MHz,分辨率宽度(RBW)为300KHz、视频宽度(VBW)、扫描时间(SWT)、调适当,输入衰减(ATT)尽量调小(最好不设衰减),幅度刻度调到10dB/格。
(3)从频谱仪上观测上行信号的底噪声,读出工作频带内底噪声的最大值即上行噪声电平LN上 (dBm) 。(实际上行噪声电平= LN上+衰减总量)、(应符合18的要求)
22242 下行噪声电平
(1)在待测直放站与覆盖天线之间加入一个环形器(或耦合器)。从下行方向看,待测直放站的下行输出信号直通到衰减器一端,而与覆盖天线端是隔离的。从上行方向看,覆盖天线的接收信号直通到待测直放站的输入端,而与衰减器一端是隔离的,连接方式如下图所示:(若加入的是耦合器,可以不加衰减器,则待测直放站接耦合器输入端,频谱仪直接接耦合器的耦合端,覆盖天线接耦合器的直通端)
施主天线 覆盖天线
(2)调频谱仪中心频率为直放站下行中心频率9445MHz,扫频宽度(SPAN)为30MHz,分辨率宽度(RBW)为300KHz,视频宽度(VBW)、扫描时间(SWT)调适当,输入衰减(ATT)尽量调小(最好不设衰减),幅度刻度调到10dB/格。
(3)从频谱仪上观测下行信号的底噪声,读出工作频带内底噪声的最大值即下行噪声电平LN下 (dBm) 。(实际下行噪声电平= LN下+衰减总量)
2227 收发信隔离度
(1) 把频谱仪(综测仪)的RF OUT端口连接到覆盖天线端,RF IN端口连接到施主天线端,连接方式如下图所示:
施主天线 覆盖天线
(2)调频谱仪(信号发生器)产生一个中心频率为GSM工作频带内测试信道(不用信道)的频率、带宽为200KHz、信号强度为20dBm的点频信号PT,通过RF OUT 端口馈入覆盖天线发射出去。
(3)用频谱仪观测从施主天线接收的从覆盖天线发射过来的信号PR,则隔离度I= PT- PR(应符合16及设计文件的要求)
2228 驻波比
用site master 分别在直放站的输入端和输出端测试其至施主天线和覆盖天线的驻波比,记录下驻波比值和直放站距施主天线和覆盖天线的长度。(驻波比应符合17的要求,馈线长度应与竣工文件相符)中继台安装过程中双工器如何调试?
中继台能够有效的解决对讲机的通化距离不足之处,但是双工器需要经过精密的调整才能达到理想的效果。但是在做无线电对讲机信号覆盖过程中,双工器是如何调试的呢?双工器调试又经过哪些步骤呢?今天小编就带您了解双工器的调试:
双工器在整机联调前应确认双工器的工作频率与无线中继台的工作频率是否一致,如相差较大时,应重新调整再联调,以避免烧坏输入高放回路。
双工器的初调一般在双工器的生产厂家进行,调整完了后,注明工作频率再出厂。但双工器在使用前,如确有必要可以按实际工作频率进行重调,调试方法连接仪器,并应接上50Ω终端假负载,反复调整并将假负载和频谱分析仪对换过来,并锁紧各调整螺钉。
整机调试阶段,收发电路板调整好以后,还要对双工器进行仔细微调,以使发射功率最大,且发射接收灵敏度劣化最小。联调时一定要注意少量的、慢慢的调整,以防止烧坏接收机。因为双工器的工作频率较高,又是一个分布参数决定其特性的组件,调整时非常敏感;并防止调整完后,在锁紧的过程中,原调整的最佳点跑了。有些双工器采用自锁螺钉,不必另外再用螺母锁紧,使调试大为方便,又节省了工时成本。
一、用扫频仪调双工器
双工器原工作频率是1635MHz/1578 MHz,怎么把频率调到144 MHz /148 MHz?将螺栓往里旋,加大加载电容,使槽路谐振频率下移到需要的频率。注意保持幅频曲线顶部平坦、幅度最高;最重要的是肩部要陡峭,离收、发频率的中间值近的各通道幅频曲线的-60dB或-80dB点,越远离收、发频率的中间值,收发隔离度越大。两个通道调完后,接上中继器和天馈线和功率计,试收发,根据仪表和听感再微调双工器的频率,因为网分和中继器的端口参数不会完全一致,调试时用的假负载和天线的阻抗电抗也不会一致。2米螺旋滤波器的选择性是不足以良好支持小于4Mc频差双工工作的,如果要收发隔离达到实用水平,双工器收、发端各有3dB左右的插损。
二、功率计、信号发生器、对讲机调试双功器
在没有扫频仪的情况下,功率计、信号发生器、灵敏度高的对讲机(有场强显示就行)也可以调试双工器。
(1)把双功器的调整螺丝的紧固螺帽松开(应该是6个);
(2)把信号发生器接到天线接口处,分别在高低段接上接收的机子。从中间的螺丝开始调整向两边有顺序的调整(接收机子要调整到-120dB上下)。信号发生器从-50dB开始减小信号的强度(如在-95dB时接收机听不到信号了,就从-90dB开始调整,边调整边看场强的变化,达到最强时,再降低信号发生器的信号强度,再重新调整)循环调整,直至最好时即可。
(3)手台用功率计测量好它的功率(如5W),接到双功器的天线段,高低两段分别接上功率计,从中间向两边有顺序的调整,直至功率达到5W即可。
如果断网第一步首先检查一下网线是否插好,如果插好了还是断网就点击右下角的网络连接标志点击鼠标右键 点击疑难解答进行检查,一般检查修复一下就好了。
如果还不行就下个360断网急救箱,在360的工具箱里找到断网急救箱下载点开全面检查。进行修复。
如果以上方法都没用有可能是局域网被攻击了,可以打开360防火墙选择局域网保护将里面的保护全开启,这样就很难被攻击了。
如果网速很慢或网络不稳定,有可能是有太多后台程序如果没有太多后台程序运行,那么一定是有人连接你的无线网了打开360的防蹭网进行检测和管理,修改复杂的WiFi密码。
还有一种可能如果没网或不稳定有可能是中了病毒,和黑客的恶意攻击,这时打开杀毒软件进行杀毒就行。
检查一下是否有网卡驱动程序,和网络连接信号灯是否有问题。如果信号灯不停的闪或一直亮着就说明没问题,反之就有问题了。就应该检查网线或联系专业人员。
若使用的vivo手机,打电话过程中有回声,可以查看以下内容排查:
1、通话时听到自己的回声
可能是对方手机原因,建议对方切换通话方式后尝试(手持切免提 或 免提切手持),另外向对方了解,查看对方手机是否存在麦克风被遮挡的情况。
可能是网络原因,建议联系运营商开通VoLTE高清通话业务后尝试,开通VoLTE功能后信号栏会显示HD图标,或者移步至信号良好的区域重新拨打。
2、通话时对方听到回声
可能是本端手机原因,请注意查看是否存在麦克风被遮挡情况,比如被手指遮挡可能会导致回音,可通过调整手持握姿尝试。
可能是网络原因,建议联系运营商开通VoLTE高清通话业务后尝试,开通VoLTE功能后信号栏会显示HD图标,或者移步至信号良好的区域重新拨打。
中国四大运营商的联系电话:10099(中国广电)、10086(中国移动)、10010(中国联通)、10000(中国电信)。
3、若以上方法未能帮忙恢复,需客户服务中心检测处理(客户服务中心地址:进入vivo官网/vivo商城APP--我的--服务网点/售后网点--选择省市进行查询客户服务中心地址)
随着移动通信行业的发展,网络规模不断壮大,移动用户日趋增多。无线收发信基站由发展初期的大区制演变为遍布大街小巷、乡村角落的蜂窝网络,这就使得无线网的优化工作日趋复杂、艰巨。同时,移动用户对无线网服务质量的敏感程度不断增加,移动通信竞争机制的引入,使无线网的服务质量更为运营商所关注,成为经营成败的重要筹码。发展较早、规模较大的无线网存在诸如工程遗留问题、网络结构复杂等因素,要在市场竞争中独占鳌头,网络的优化显得更为重要。一、网络优化的范畴
网络优化是高层次的维护工作,是通过采用新技术手段以及优化工具对网络参数及网络资源进行合理的调整,从而提高网络质量的维护工作。可采用室内分布、跳频、同心圆技术、DTX、功率控制等手段减少干扰,增大网络容量,改善无线环境;通过调整天线角度,增益,方位角,俯仰角以及功率大小,选择最佳站址,调整载频配置,均衡话务分布,改善网络质量,获得最佳覆盖效果等等。
二、网络优化是基础维护工作的升华。
基础维护做的好,可确保设备完好率;但要提高网络质量,必须要优化网络参数,即进行网络优化。只有搞好网络优化才能使基础维护的成效得以充分体现。
维护为经营服务,经营为用户服务,维护的最终目标是为网上用户提供高质量的网络服务,而只有通过网络优化才能实现维护的最终目标,维护工作才有实际的意义。
三、网络优化是持续性的工作
1、因为影响网络质量的因素不是一成不变的,网络优化应随着网络参数和环境的变化而不断进行。各地区特别是近几年来,经济蓬勃发展,城市高楼大厦不断涌现,改变了无线信号的传播环境,可能会出现新的盲区以及来自系统内部的干扰。而且话务的分布也在改变,在原来没有的话务或话务较小的地区会出现更高的话务需求,需要及时调整网络以吸收话务量。
2、工程建设会严重改变网络参数,尽管工程规划务求做得尽善尽美,但规划人员很难将参数调整到最佳状态,不可避免地造成干扰和话务的不均衡,这就需要网络优化来解决。
3、无线网软、硬件版本的升级也会改变部分BSC数据库中的参数,也需要调整参数设置,实施网络优化。
因此,网络优化非一朝一夕,而是长期、持久、艰巨的维护工作。简单地说,只要网络运营一天,就需要进行网络优化。网络优化的重要性和持久性决定了网络优化工作必须由各地市根据当地的实际 情况持续地开展,任何短期的、突击性的优化从长远看是取效甚微的。 下面我们就优化中的室内覆盖、天线在网络优化中的作用、掉话及网络虚拟分层等几个热点问题进行探讨,以达到共同学习的目的。
第二部分、室内覆盖的优化
一、室内覆盖优化的意义
随着市区基站密度加大,优化工作的深入,城市的室外覆盖已基本做到了无缝连接,话音质量也进一步得到改善。由于用户在大型建筑物(尤其是酒店、商务和商业中心、大型购物商场、停车场等)内使用移动电话所产生的话务量日益增加,用户已不满足于只有室外覆盖良好的移动通信服务,同时也要求网络运营商能提供室内覆盖良好的服务,但此类场所由于其建筑体自身的原因(如墙体较厚、面积较大、楼层较高等等),往往是网络覆盖的盲区或信号特别差。尤其是目前大部分用户所使用的GSM系统,其信号的穿透能力比模拟系统更弱,现象也就更明显。因此,解决好室内覆盖,满足用户的需求,提高网络的通信质量,也就成为工程建设和网络优化工作的一项重要内容。
从狭义上来讲,室内覆盖问题仅仅是对室内覆盖盲区的改善,解决电话打不出去的问题。从广义上来讲,室内覆盖问题包括对室内移动通信话音质量、网络质量、系统容量的改善问题。除了对诸如地下室,一、二层等通信盲区提供覆盖外,同时也应对建筑物的高层部分因接收到来自多方向的杂乱不稳定信号而导致掉话、断续、切换不成功等方面进行改善。同时,室内覆盖作为一种扩容手段,对在高话务量地区分担室外基站话务,增加网络容量,使室内话务在室内吸收,减少同频干扰也起很大作用。另外,良好的室内覆盖,对于提高网络运营商的形象,为用户提供更好更完善的随时随地通信服务,提高企业竞争力具有很大的意义。
二、改善室内覆盖的方法及手段
改善室内覆盖,有两种基本方法:一种是加大室外信号解决室内覆盖;另一种是采用室内信号分布系统方式。
1、加大室外信号解决室内覆盖方式
在存在室内盲区的地方附近安置直放站,或提高覆盖该地方基站发射功率,提高室外信号强度,利用电磁波的穿透能力而达到解决室内覆盖问题。这种方式的优点是:简单、快捷,不需要花很大的投资,工程工作量较小,不需要在建筑物中作布线,建设速度较快。这种方式对于在一些网络还不是很完善的地方,一方面不但解决了室内覆盖的问题,另一方面也解决了周围地区覆盖和话务吸收,是一种一举两得的事情。但在网络已经比较完善、基站密集的地方,用这种方式就不是一种明智之举,特别是采用直放站,对系统造成的影响比起解决这些方的室内覆盖可能是得不偿失。这种方式缺点是:需要进行频率规划,有时甚至是必须对网络进行较大的频率调整。同时,用这种方式并不是一种全面解决问题的方式,对于地下室、大型建筑物和采用金属玻璃幕墙的建筑物,其室内可能有相当的地方仍然是盲区,因此,该种方法已不能满足大型室内建筑的覆盖需求。
2、室内信号分布系统方式
建设室内分布系统是目前解决室内覆盖问题最有效的方法,它与前一种方案最根本的区别就是将无线信号通过有线方式直接引到室内的每一个区域,消除室内覆盖盲区,抑制干扰,为室内用户提供稳定、可靠的信号,使用户在室内也能享受高质量的通信服务。这种方案在设计时,要考虑信号不外泄到建筑物外面,而对网络造成干扰。
三、室内分布系统组成
室内分布系统主要由三部分组成:信号源设备(微蜂窝、宏蜂窝基站或室内直放站);室内布线及其相关设备(同轴电缆、光缆、泄漏电缆、电端机、光端机等);干线放大器、功分器、耦合器、室内天线等设备。
建筑物室内覆盖要考虑的基本因素主要有:隔墙的阻挡为5~20dB、楼层的阻挡为20dB、家具及其它障碍物的阻挡为2~15dB、多径衰落及高层建筑物上的“孤岛效应”和“乒乓效应”。各种不同室内环境对无线环境的影响是非常显著的,这在工程设计及优化中都要综合考虑。
四、不同信号源比较
最常用的信号源主要有以下两种:宏蜂窝+直放站和微蜂窝+室内覆盖。
1、宏蜂窝+直放站
这是采用室外天线将附近宏蜂窝基站的信号接收后经放大处理,再由室内天线分布到所需覆盖的位置。这种采用无线耦合的方式,对于存在频率复用较高的市区,需严格调试,以免对网络造成干扰。由于直放站本身没有增加信道资源,只是信号的延伸,故直放站一般用于低话务量的地方,覆盖范围也罗小,一般只能作为补盲点来使用。如小型酒楼、地下停车场等。
2、微蜂窝+室内覆盖
微蜂窝就是一个基站,只不过基站的发射天线是分放在室内。微蜂窝增加了网络的信道资源,可提高网络容量和通话质量,适合于大范围的室内覆盖。它一般用于话务量密集的地方(如:星级酒店、大型娱乐场所、商业和商业中心等),既保证优良的覆盖,又分担了周围基站的话务量。
五、室内覆盖系统的优化
对于建成的室内覆盖系统,最重要的就是日常维护和优化。以下结合实际工作中的例子进行说明。
1、相邻小区的确定
在城市的中心区,基站密度都比较大,平均站距小于1km,所以通常进入室内的信号比较杂乱、不稳定。特别是在一些没有完全封闭的高层建筑的中、高层,进入室内的信号非常多,邻近基站的信号直射,远处基站的信号通过直射、折射、反射、绕射等方式进入室内,信号忽强忽弱不稳定,同频、邻频干扰严重。手机在这种环境下使用,未通话时,小区重选频繁;通话过程中频繁切换,易导致话音质量差、掉话现象严重。
解决这类问题的最主要方式是根据实际情况为微蜂窝选择适当的相邻小区。相邻小区测量频点的限制,可以有效地控制微蜂窝与其他小区发生联系。
例如,湘潭繁华地区的鸿达酒店安装了微蜂窝室内覆盖系统。由于该地区基站分布密度大,室内中庭信号复杂。由于对微蜂窝作的相邻小区较多,导致切换频繁,指标反映为切换成功率较低、掉话较多。通过实地测量,确定了三个最主要的900M宏蜂窝服务小区:9141、9142、9143,并作双向切换关系。又由于在三楼电梯口测得较强的1800M宏蜂窝63141的信号,考虑到用户占用该小区进入微蜂窝的可能性极大,故作62141向微蜂窝的单向切换关系。相邻小区精简后指标显示切换成功率显著提高、掉话率降低。
由这个典型案例可知微蜂窝的相邻小区一定要因地制宜,数目不在多少,而在准确。一般确定两三个主服务小区即可,但同时要考虑若相邻小区过少,宏蜂窝退服导致由外部到室内无法切换的问题。所以相邻小区至少要两个以上。
2、重选和切换的优化
现代建筑多以钢筋混凝土为骨架,再加上全封闭式的外装修,对无线信号的屏蔽和衰减特别厉害;高层建筑物内电梯多,又多为金属全封闭结构,这就导致在进出建筑物、电梯时信号变化非常强烈。这就要对微蜂窝的相关重选、切换参数进行细致的设置、调整。 例如,武汉某酒店大厅及低层为微蜂窝A覆盖,电梯及高层为微蜂窝B覆盖。从大厅进电梯手机由 A重选到B时正常,而由电梯进入大厅时,手机由B重选到A上则明显迟缓,甚至出现短暂无信号情况。通过小区参数查询发现,对小区重选偏置参数的设置A、B小区明显不一致,B远大于A。设计者本意是为让B更易吸收话务,而使手机在空闲状态容易重选进入该小区,但差别太大,致使在B小区信号很弱、A小区信号已很强的情况下手机仍然无法重选。通过调整上述情况消失,手机重选正常。
3、载频调整优化
对于许多大型酒店和购物中心采用多个微蜂窝小区分片覆盖,分担话务的情况,我们都建议尽量通过调整载频分布,将多个小区合并为一个小区,因为那样往往会出现话务量不均衡甚至相差悬殊以及各小区间的切换成功率较低的问题。将多个小区覆盖优化调整为一个小区覆盖,用户可以无切换通话,消灭了潜在的不稳定因素。
另外分布系统的工艺质量也会影响微蜂窝信号,例如上下行功率不匹配导致上行干扰或信号弱,引起话音断续或掉话。这些则要在分布系统厂家的配合下进行优化工作。
第三部分、天线在网络优化中的作用
天线技术是移动通信技术基础,基站天线是移动通信网络与用户手机终端空中无线联结的设备,其主要作用是辐射或接收无线电波,辐射时将高频电流转换为电磁波,将电能转换电磁能;接收时将电磁波转换为高频电流,将磁能转换为电能。天线的性能质量直接影响移动通信网络的覆盖和服务质量;不同的地理环境,不同服务要求需要选用不同类型,不同规格的天线。天线调整在移动通信网络优化工作中有很大的作用。
一、天线的主要性能指标
表征天线性能的主要参数有方向图,增益,输入阻抗,驻波比,极化方式,双极化天线的隔离度,及三阶交调等。
1、方向图
天线方向图是表征天线辐射特性空间角度关系的图形。以发射天线为例,从不同角度方向辐射出去的功率或场强形成的图形。一般地,用包括最大辐射方向的两个相互垂直的平面方向图来表示天线的立体方向图,分为水平面方向图和垂直面方向图。平行于地面在波束最大场强最大位置剖开的图形叫水平面方向图;垂直于地面在波束场强最大位置剖开的图形叫垂直面方向图。
描述天线辐射特性的另一重要参数半功率宽度,在天线辐射功率分布在主瓣最大值的两侧,功率强度下降到最大值的一半(场强下降到最大值的0707倍,3dB衰耗)的两个方向的夹角,表征了天线在指定方向上辐射功率的集中程度。一般地,GSM定向基站水平面半功率波瓣宽度为65o,在120o的小区边沿,天线辐射功率要比最大辐射方向上低9-10dB。
2、方向性参数
不同的天线有不同的方向图,为表示它们集中辐射的程度,方向图的尖锐程度,我们引入方向性参数。理想的点源天线辐射没有方向性,在各方向上辐射强度相等,方向是个球体。我们以理想的点源天线作为标准与实际天线进行比较,在相同的辐射功率某天线产生于某点的电场强度平方E2与理想的点源天线在同一点产生的电场强度的平方E02的比值称为该点的方向性参数D=E2/E02。
3、天线增益
增益和方向性系数同是表征辐射功率集中程度的参数,但两者又不尽相同。增益是在同一输出功率条件下加以讨论的,方向性系数是在同一辐射功率条件下加以讨论的。由于天线各方向的辐射强度并不相等,天线的方向性系数和增益随着观察点的不同而变化,但其变化趋势是一致的。一般地,在实际应用中,取最大辐射方向的方向性系数和增益作为天线的方向性系数和增益。
另外,表征天线增益的参数有dBd和dBi。DBi是相对于点源天线的增益,在各方向的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+215。相同的条件下,增益越高,电波传播的距离越远。习惯上我们采用dBi来表征天线的增益。
4、输入阻抗
输抗是指天线在工作频段的高频阻抗,即馈电点的高频电压与高频电流的比值,可用矢量网络测试分析仪测量,其直流阻抗为0Ω。一般移动通信天线的输入阻抗有50Ω和75Ω两种,在湘潭的移动网中我们采用的都是输入电阻为50Ω的天线。
5、驻波比
由于天线的输入阻抗与馈线的特性阻抗不可能完全一致,会产生部分的信号反射,反射波和入射波在馈线上叠加形成驻波,其相邻的电压最大值与最小值的比即为电压驻波比VSWR。一般地说,移动通信天线的电压驻波比应小于14,但实际应用中我们都要求VSWR应小于12。
6、极化方式
根据天线在最大辐射(或接收)方向上电场矢量的取向,天线极化方式可分为线极化,圆极化和椭圆极化。线极化又分为水平极化,垂直极化和±45o极化。发射天线和接收天线应具有相同的极化方式,一般地,移动通信中多采用垂直极化或±45o极化方式。实际上采用垂直极化方式是历史造成的错误,因为垂直极化波受天气,特别是受下雨的影响很大,所以在今后的工作中如果可能的话要尽量少用此类型的天线。
7、双极化天线隔离度
双极化天线有两个信号输入端口,从一个端口输入功率信号P1dBm,从另一端口接收到同一信号的功率P2dBm之差称为隔离度,即隔离度=P1-P2。
移动通信基站要求在工作频段内极化隔离度大于28dB。±45o双极化天线利用极化正交原理,将两副天线集成在一起,再通过其他的一些特殊措施,使天线的隔离度大于30dB。
二、优化中天线的选择
1、城区内话务密集地区
在话务量高度密集的市区,基站间的距离一般在500-1000米,为合理覆盖基站周围500米左右的范围,天线高度根据周围环境不宜太高,选择一般增益的天线,同时可采用天线下倾的方式。天线下倾的倾角计算公式为:α=arctg(h/(r/2)),α为波束倾角,h为天线高度,r为站间距离。
选择内置电下倾的双极化定向天线,配合机械下倾,可以保证方向图水平半功率宽度在主瓣下倾的角度内变化小。
(1)对话务量高密集市区,基站间距离300-500米,可计算出天线倾角α大约在10o-19o之间,原天线单纯使用机械下倾的方式,下倾角一般在10o以上,水平方向图半功率波瓣宽度将变宽,造成站间干扰;如果采用内置电下倾9o的±45o双极化天线,这样电下倾加上机械下倾可变倾角将达15o,可保证水平方向图半功率波瓣宽度在主瓣下倾的10o---19o内无变化,同时结合适当调整基站发射功率,完全可以满足对话务量高密集市区覆盖且不干扰的要求。
(2)对话务量较密集市区,基站间距离大于500米,可计算出天线倾角α大约在6o-15o之间,如果采用内置电下倾6o的±45o双极化天线,这样电下倾加上机械下倾可变倾角将达10o,可保证水平方向图半功率波瓣宽度在主瓣下倾的6o---16o内无变化,可以满足对话务量较密集市区覆盖且不干扰的要求。
(3)话务量底密集市区,基站间距离可能更大,天线倾角α大约在3o-12o之间,可采用内置电下倾3o的±45o双极化天线,这样电下倾加上机械下倾可变倾角将达8o,可保证水平方向图半功率波瓣宽度在主瓣下倾的3o---12o内无变化,可以满足对这一区域覆盖且不干扰的要求。 2、在郊区或乡镇地区
在话务量不太密集的郊区或乡镇地区,信号覆盖范围要适当大,基站间距离较大,可以选用单极化,空间分集,增益较高的65o定向天线,如西安海天的(17DB)65o定向天线HTDBS096517型号的天线,既考虑容量又兼顾覆盖。
3、在农村地区
在话务量很底的农村地区,主要考虑信号覆盖,基站大多是全向站。天线可考虑采用高增益的全向天线,天线架高可设在40-50米,同时适当调大基站发射功率,以增强信号的覆盖范围,一般平原地区-90dBm覆盖距离可达5公里。
4、在铁路或公路沿线
在铁路或公路沿线主要考虑沿线的带状覆盖分布,可以采用双扇区型基站,每个区180o;天线宜采用单极化3dB波瓣宽度为90o的高增益定向天线,两天线相背放置,最大辐射方向与高速路的方向一致。
另外,如果沿路方向话务量很底,既考虑覆盖又考虑设备成本,可采用全向天线变形的双向天线,双向3dB波瓣宽度为70o,最大增益为14dBi,如:西安海天的全向天线变形的双向天线HTSX-09-14型号的天线。
5、在城区内的一些室内或地下
在城区内的一些室内或地下,如:高大写字楼内,地下超市,大酒店的大堂等,信号覆盖较差,但话务量较高。为满足这一区域用户的通信需求,可采用室内微蜂窝或室内分布系统,天线采用分布式的低增益天线,以避免信号干扰影响通信质量。
总之,天线在移动通信网络优化中起到非常大的作用,同时馈线,馈线转换头及室内外跳线的质量也非常大地影响着移动通信基站的覆盖质量。大部分覆盖效果差的基站是由于馈线及连接部分的质量差引起的,可通过VSWR仪表逐级逐段测量来判定质量差的部分,及时更换以保证整个基站天馈线部分的质量,保证基站的运行质量和覆盖质量。
第四部分、掉话的分析和解决方法
掉话现象是用户在使用手机过程中经常遇到的问题,也是用户申告的热点,它是系统各种不良因素的综合体现,对系统的运行质量影响很大,所以如何降低系统的掉话率,提高网络运行质量是网络优化工作的一个重要内容。
一、掉话产生的原因
系统的掉话主要体现为SDCCH和TCH的掉话,其主要产生原因有以下几点:
1、由于切换导致的掉话
所谓切换,就是指当移动台在通话过程中从一个基站覆盖区移动到另一个基站覆盖区,或者由于外界干扰而造成通话质量下降时,必须改变原有的话音信道而转接到一条新的空闲话音信道上去,以继续保持通话的过程。切换是移动通信系统中一项非常重要的技术,切换失败会导致掉话,影响网络的运行质量。GSM系统采用的是移动台辅助切换方式,即由移动台监测判决,由交换中心控制完成,在切换过程中基站和移动台均参与切换过程。
(1)越区切换参数定义不合理
如:上行电平切换门限、下行电平切换门限、切换余量以及切换功率控制参数等定义不合理,致使越区切换失败,产生掉话。
(2)信号强度滞后值设置不当
有些小区,由于信号强度滞后值设置太小,小区基站没有足够的时间处理切换呼叫,造成许多呼叫在切换时丢失。(但若设置太大,又会引起许多不必要的切换)。
(3)忙时目标基站无切换信道
有一些小区,由于相邻小区都很繁忙,造成忙时目标基站无切换信道或在拓扑关系中漏定义切换条件(含BSC间切换和越局切换),致使手机用户在进行切换时无法占用相邻小区的空闲话音信道,此时BSC将对此进行呼叫重建,若主叫基站的信号此时不能满足最低工作门限或亦无空闲话音信道,则呼叫重建失败导致掉话。
(4)网络色码参数设置不当
允许的网络色码参数定义了移动台需测量的小区的NCC码的集合,为手机切换提供可行的目标小区。如果该数据定义错误将引起越区切换不成功和小区重选失败,产生掉话。
(5)信号强度太弱
当基站做分担话务量的切换时,有些切换请求会因切入小区的信号强度太弱而失败,有时即使切换成功,也会因信号强度太弱而掉话。因为我们在BSC中对手机用户的接收信号强度设有最低门限,当低于此门限值时,手机无法建立呼叫。
(6)网络存在漏覆盖区或盲区
当移动台进入网络的漏覆盖区或信号强度盲区时,信号变得太弱而发出切换请求,切换不成功引起掉话。
(7)孤岛效应
孤岛效应是基站覆盖性问题,当基站覆盖在大型水面或多山地区等特殊地形时,由于水面或山峰的反射,使基站在原覆盖范围不变的基础上,在很远处出现“飞地”,而与之有切换关系的相邻基站却因地形的阻挡覆盖不到,这样就造成“飞地”与相邻基站之间没有切换关系,“飞地”因此成为一个孤岛,当手机占用上“飞地”覆盖区的信号时,很容易因没有切换关系而引起掉话。
2、由于干扰而导致的掉话
无线电波传播的特性决定其在传播过程中易受外界多种因素的影响;由于网络内部原因,它还受到网络内部各种因素的影响,如同频、邻频干扰以及网络中设备本身的非线性、设备故障所引起的交调干扰。在网络实际运行中我们常常遇到以下几种干扰:
(1)设备本身的非线性以及设备故障引起的交调干扰。设备运行中缺乏定期的指标测试和调整,使交调干扰在一定范围存在。如发射部分尤其是直放站上行发射杂散辐射较大、接收部分杂散响应较大,造成对本信道和其它信道的干扰,严重的将无法正常拨叫和通话。在网络运行中曾出现过因为直放站而干扰城区多个跳频基站的情况,并引起大量掉话
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)