112的因数有1、112、2、56、4、28、8、14、16、7。
假如ab=c(a、b、c都是整数),那么我们称a和b就是c的因数。需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。反过来说,我们称c为a、b的倍数。在研究因数和倍数时,小学数学不考虑0。
相关性质:
1、合数:除了1和它本身还有其它正因数。
2、1只有正因数1,所以它既不是质数也不是合数。
3、若a是b的因数,且a是质数,则称a是b的质因数。例如2,3,5均为30的质因数。6不是质数,所以不算。7不是30的因数,所以也不是质因数。
4、公因数只有1的两个非零自然数,叫做互质数。
将需要求最大公因数的两个数A,B分别分解质因数,再从中找出A、B公有的质因数,把这些公有的质因数相乘,即得A、B的最大公约数。
1、相乘法
写成几个质数相乘的形式(这些不重复的质数即为质因数),实际运算时可采用逐步分解的方式。
如:36=2233 运算时可逐步分解写成36=49=2233或312=3223
2、短除法
从最小的质数除起,一直除到结果为质数为止。分解质因数的算式的叫短除法。
扩展资料:
定理
不存在最大质数的证明:(使用反证法)
假设存在最大的质数为N,则所有的质数序列为:N1,N2,N3……N
设M=(N1×N2×N3×N4×……N)+1,
可以证明M不能被任何质数整除,得出M也是一个质数。
而M>N,与假设矛盾,故可证明不存在最大的质数。
最大公约数的求法:
1、用分解质因数的方法,把公有的质因数相乘。
2、用短除法的形式求两个数的最大公约数。
3、特殊情况:如果两个数互质,它们的最大公约数是1。
如果两个数中较小的数是较大的数的约数,那么较小的数就是这两个数的最大公约数。
参考资料来源:百度百科——分解质因数
求一个数分解质因数,要从最小的质数除起,一直除到结果为质数为止。分解质因数的算式的叫短除法,和除法的性质差不多,还可以用来求多个个数的公因式:
如24
2┖24(是短除法的符号)
2┖12
2┖6
3——3是质数,结束
得出24=2×2×2×3=2^3×3(m^n=m的n次方)
再如105
3┖105
5┖35
----7——7是质数,结束
得出105=3×5×7
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)