排列组合计算公式如下:
1、从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。
2、从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。
排列就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。
扩展资料
排列组合的发展历程:
根据组合学研究与发展的现状,它可以分为如下五个分支:经典组合学、组合设计、组合序、图与超图和组合多面形与最优化。
由于组合学所涉及的范围触及到几乎所有数学分支,也许和数学本身一样不大可能建立一种统一的理论。
然而,如何在上述的五个分支的基础上建立一些统一的理论,或者从组合学中独立出来形成数学的一些新分支将是对21世纪数学家们提出的一个新的挑战。
参考资料:
组合及计算公式为:c(n,m)=p(n,m)/m!=n!/((n-m)!m!);c(n,m)=c(n,n-m)
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号c(n,m)表示。
扩展资料:
其他排列与组合公式介绍:
从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r),n个元素被分成k类,每类的个数分别是n1,n2,……nk这n个元素的全排列数为n!/(n1!n2!……nk!)。
而k类元素来说,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m),排列(Pnm(n为下标,m为上标))
Pnm=n×(n-1)……(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n。
组合(Cnm(n为下标,m为上标)),Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m。
排列组合的计算公式:
排列A(n,m)=n×(n-1)。(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)。
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!
例如:
A(4,2)=4!/2!=43=12
C(4,2)=4!/(2!2!)=43/(21)=6
除法运算
1、除以一个不等于零的数,等于乘这个数的倒数。
2、两数相除,同号得正,异号得负,并把绝对值相除。零除以任意一个不等于零的数,都得零。
注意:
零不能做除数和分母。
有理数的除法与乘法是互逆运算。
1、排列组合中,组合的计算公式为:
2、计算举例:
扩展资料:
一个正整数的阶乘,是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。亦即n!=1×2×3××n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
当 m 是自然数时,表示不超过 m 且与 m 有相同奇偶性的所有正整数的乘积。如下图所示:
参考资料:
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)