心脏线怎么画?

心脏线怎么画?,第1张

按照如下极坐标方程,然后带入不同参数即可得到一个心脏线画出的心形。

ρ=a(1+cosθ)(心型朝右)

ρ=a(1-cosθ)(心型朝左)

心形线的平面直角坐标系方程表达式分别为 x^2+y^2+ax=asqrt(x^2+y^2) 和 x^2+y^2-ax=asqrt(x^2+y^2)

参数方程

-pi<=t<=pi 或 0<=t<=2pi

x=a(2cos(t)-cos(2t))

y=a(2sin(t)-sin(2t))

所围面积为3/2PIa^2,形成的弧长为8a。

心脏线亦为蚶线的一种。在曼德博集合正中间的图形便是一个心脏线。心脏线的英文名称“Cardioid”是 de Castillon 在1741年的《Philosophical Transactions of the Royal Society》发表的;意为“像心脏的”。

扩展资料

心脏线在物理学中的运用:

Morley三角形与心脏线和物理学有那么一丝关系,Morley最初是怎么得到这个诡异的正三角形的呢
其实正是来源于对心脏线和各种物理学中的摆线的分析。

注意, 复平面的变换 z -- z + (1/2)z²恰好把单位圆周变为一条心脏线 这样, 若t
在单位圆上运动, 则 t + (1/2)t²的轨迹就是一条心脏线, 当然, 它的位置是很特殊的
一般位置的一条心脏线, 可写为 a(t + (1/2)t²) + b,
其中a,b为复数。

这种用多项式来表示摆线的方法, 正是Morley首创。

Morley紧接着分析了与三条直线都相切的心脏线的中心之轨迹, 发现它恰好是三条直
线, 两两夹角为60度。

自然地,,这三条直线的交点,,就构成一个正三角形。

容易发现, 它正是心脏线与某边双重相切时留下的中心。大概在阿基米德的时代,,当人们
尝试三等分角的时候,就已经知道, 如果让角的一边与心脏线这样双重相切, 角的另一边
也与心脏线相切, 那么心脏线的中心, 恰好在角的三等分线上 这就导致了Morley定理的
现代表述。

参考资料:

百度百科-心脏线

极坐标下面积公式为:s=05积分f^2×da其中a为角,f为径长,此题为p,积分上下限对应角a的范围此题中:s=05∫(1+cosa)^2da,0<=a<=2π即s=05∫(1+2cosa+cosa方)da=05∫(1+2cosa+[cos2a+1]/2)da=05[3a/2+2sina+sin2a/2],a从0到2π即s=053π=3π/2

联立两个方程
r=3cosθ
r=1+cosθ
当两个相等时,3cosθ=1+cosθ
即2cosθ=1,θ=π/3和-π/3
先对心形线在-π/3到π/3的面积求出来,因为上下对称,所以面积是上面一块的两倍
S1=∫[0,π/3](1+cosθ)^2dθ=∫[0,π/3](1+2cosθ+cosθ^2)dθ=π/2+9根号3/8
对于剩下的部分就是圆r=3cosθ,从π/3积分到π/2,仍然上下对称
S2=9∫[π/3,π/2](cosθ)^2dθ=3π/4-9根号3/8
总面积S=S1+S2=3π/4-9根号3/8+π/2+9根号3/8=5π/4

1、直角坐标方程

心形线的平面直角坐标系方程表达式分别为 x^2+y^2+ax=asqrt(x^2+y^2) 和 x^2+y^2-ax=asqrt(x^2+y^2)。

2、极坐标方程

水平方向: ρ=a(1-cosθ) 或 ρ=a(1+cosθ) (a>0)

垂直方向: ρ=a(1-sinθ) 或 ρ=a(1+sinθ) (a>0)

极坐标系下绘制 r = Arccos(sinθ),我们也会得的一个漂亮的心形线。数学爱好者创作的平面直角坐标系下的心形线,由两个函数表达式构成,但在利用几何画板作图时请务必将角度单位从默认的度改为弧度。

扩展资料

相关故事:

1650年,斯德哥尔摩的街头,52岁的笛卡尔邂逅了18岁的瑞典公主克里斯汀。 那时,落魄、一文不名的笛卡尔过着乞讨的生活,全部的财产只有身上穿的破破烂烂的衣服和随身所带的几本数学书籍。

一个宁静的午后,笛卡尔照例坐在街头研究数学问题。突然,有人来到他旁边,拍了拍他的肩膀,扭过头,笛卡尔看到一张年轻秀丽的睑庞,她就是瑞典的小公主,国王最宠爱的女儿克里斯汀。

她蹲下身,拿过笛卡尔的数学书和草稿纸,和他交谈起来。言谈中,他发现,这个小女孩思维敏捷,对数学有着浓厚的兴趣。

几天后,他意外地接到通知,国王聘请他做小公主的数学老师。在笛卡尔的带领下,克里斯汀走进了奇妙的坐标世界,每天的形影不离也使他们彼此产生了爱慕之心。

然而,没过多久,他们的恋情传到了国王的耳朵里。国王大怒,下令马上将笛卡尔处死。在克里斯汀的苦苦哀求下,国王将他放逐回国,公主被软禁在宫中。 

当时,欧洲大陆正在流行黑死病。身体孱弱的笛卡尔回到法国后不久,便染上重病。在生命进入倒计时的那段日子,他每天坚持给她写信,盼望着她的回音。然而,这些信都被国王拦截下来,公主一直没有收到他的任何消息。 

在笛卡尔给克里斯汀寄出第十三封信后,他永远地离开了这个世界。这最后一封信上没有写一句话,只有一个方程:r=a(1-sinθ)。

国王不忍看着心爱的女儿每天闷闷不 乐,便把这封信给了她。拿到信的克里斯汀着手把方程图形画了出来,一颗心形图案出现在眼前,克里斯汀不禁流下感动的泪水,这条曲线就是著名的“心形线”。

参考资料来源:百度百科-心形线

x2+y2-|x|y=1图像是:数学图形示爱方式。

笛卡尔于1596年出生在法国,欧洲大陆爆发黑死病时他流浪到瑞典,认识了瑞典一个小公国18岁的小公主克里斯蒂娜(Kristina),后成为她的数学老师,日日相处使他们彼此产生爱慕之心。

公主的父亲国王知道了后勃然大怒,下令将笛卡尔处死,后因女儿求情将其流放回法国,克里斯汀公主也被父亲软禁起来。笛卡尔回法国后不久便染上黑死病,他日日给公主写信,因被国王拦截,克里斯汀一直没收到笛卡尔的信。

笛卡尔在给克里斯汀寄出第十三封信后就气绝身亡了,这第十三封信内容只有短短的一个公式:r=a(1-sinθ)。国王看不懂,觉得他们俩之间并不是总是说情话的,大发慈悲就把这封信交给一直闷闷不乐的克里斯汀,公主看到后,立即明了恋人的意图。

她马上着手把方程的图形画出来,看到图形,她开心极了,她知道恋人仍然爱着她,原来方程的图形是一颗心的形状。公主在纸上建立了极坐标系,用笔在上面描下方程的点,看到了方程所表示的心脏线,理解了笛卡尔对自己的深深爱意。这也就是著名的“心形线”。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12835923.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存