(1)python的优势不在于运行效率,而在于开发效率和高可维护性。在数据的载入和分发,python是很高效的;如果是求一些常用的统计量和求一些基本算法的结果,python也有现成的高效的库;如果是纯粹自己写的算法,没有任何其他可借鉴的,什么库也用不上,用纯python写是自讨苦吃。
(2)R 主要是统计学家为解决数据分析领域问题而开发的语言,R 语言的优势则是在于:
统计学家和几乎覆盖整个统计领域的前沿算法(3700+ 扩展包);开放的源代码(free, in both senses),可以部署在任何 *** 作系统,比如 Windows, Linux, Mac OS X, BSD, Unix强大的社区支持;高质量、广泛的统计分析、数据挖掘平台;重复性的分析工作(Sweave = R + LATEX),借助 R 语言的强大的分析能力 + LaTeX 完美的排版能力,可以自动生成分析报告;方便的扩展性,包括可通过相应接口连接数据库,如 Oracle、DB2、MySQL、同 Python、Java、C、C++ 等语言进行互调,提供 API 接口均可以调用,比如 Google、Twitter、Weibo,其他统计软件大部分均可调用 R,比如 SAS、SPSS、Statistica等,甚至一些比较直接的商业应用,比如 Oracle R Enterprise, IBM Netezza, R add-on for Teradata, SAP HANA, Sybase RAP。
2、关于如何优雅地处理,则是一项艺术家的工作,如果有看过TED演讲的话,可以看到很多可视化的数据分析结果,这些都是非常cool的。
3、综上所述,首先,要针对特定的问题分清楚问题的核心,和研究的方法;然后,挑选合适的工具,进行分析;最后,则是通过艺术家般的想象力,通过数据可视化表达清楚。#读入txt文档
result=[]
f_new = open('recordnewtxt','w')
with open('recordtxt','r+') as f:
for line in f:
resultappend(list(linestrip('
')split(',')))
然后处理list里面的元素就行了
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)