怎样求x1和x2的相关系数R2

怎样求x1和x2的相关系数R2,第1张

先求x1与x2的拟合半径与1之间的大小关系,r<0则x1与x2具备很强的线性相关关系,且为负相关;线性回归方程一定过样本中心点;在一组模型中残差平方和越小,拟合效果越好,相关指数表示拟合效果的好坏,指数越小,相关性越强;相关指数R2用来衡量两个变量之间线性关系的强弱R2越接近于1,说明相关性越强,相反,相关性越小。
两个变量之间相关关系的方法,要想知道两个变量之间的有关或无关的精确的可信程度,只有利用独立性检验的有关计算,才能做出判断。
拓展:
数理统计是数学的一个分支,分为描述统计和推断统计。它以概率论为基础,研究大量随机现象的统计规律性。描述统计的任务是搜集资料,进行整理、分组,编制次数分配表,绘制次数分配曲线,计算各种特征指标,以描述资料分布的集中趋势、离中趋势和次数分布的偏斜度等。推断统计是在描述统计的基础上,根据样本资料归纳出的规律性,对总体进行推断和预测。

相关系数公式为:若Y=a+bX,则有:令E(X) = μ,D(X) = σ,则E(Y) = bμ + a,D(Y) = bσ,E(XY) = E(aX + bX) = aμ + b(σ + μ),Cov(X,Y) = E(XY) − E(X)E(Y) = bσ。

相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母r表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。

相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。相关系数是用以反映变量之间相关关系密切程度的统计指标。

相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。需要说明的是,皮尔逊相关系数并不是唯一的相关系数,但是最常见的相关系数。

在统计学中,回归分析指的是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。在回归分析中,相关指数R2越接近1,说明:回归模型的拟合效果越好。
温馨提示:以上信息仅供参考。
应答时间:2021-11-17,最新业务变化请以平安银行官网公布为准。

首先我要说,那个东西叫相关系数,不叫相关指数
相关系数r
r=n(写上面)∑i=1(写下面)(Xi-X的平均数)(Yi-Y平均数)/根号下[∑(样子同上)(Xi-X平均数)的平方∑(样子同上)(Yi-Y平均数)的平方
就是这样了
你能看明白就明白了
不能就算了,3,请问相关系数,线性回归方程,相关指数的公式是什么
注意:我要的是高中课本里的公式啊
就是不记得了,这怎么想啊,书本又不记得带,哎```还是帮帮忙吧

线性回归方程中的相关系数r

r=∑(Xi-X的平均数)(Yi-Y平均数)/根号下[∑(Xi-X平均数)^2∑(Yi-Y平均数)^2]

R2就是相关系数的平方,

R在一元线性方程就直接是因变量自变量的相关系数,多元则是复相关系数 判定系数R^2

也叫拟合优度、可决系数。表达式是: R^2=ESS/TSS=1-RSS/TSS

该统计量越接近于1,模型的拟合优度越高。

问题:在应用过程中发现,如果在模型中增加一个解释变量, R2往往增大 这就给人一个错觉:要使得模型拟合得好,只要增加解释变量即可。

——但是,现实情况往往是,由增加解释变量个数引起的R2的增大与拟合好坏无关,R2需调整。

这就有了调整的拟合优度: R1^2=1-(RSS/(n-k-1))/(TSS/(n-1))

在样本容量一定的情况下,增加解释变量必定使得自由度减少,所以调整的思路是:将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响: 其中:n-k-1为残差平方和的自由度,n-1为总体平方和的自由度。

总是来说,调整的判定系数比起判定系数,除去了因为变量个数增加对判定结果的影响。 R = R接近于1表明Y与X1, X2 ,…,Xk之间的线性关系程度密切; R接近于0表明Y与X1, X2 ,…,Xk之间的线性关系程度不密切


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12907755.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存