两点间距离公式的三维坐标系中

两点间距离公式的三维坐标系中,第1张

设A(x1,y1,z1),B(x2,y2,z2)
|AB|=√[(x2-x1)^2+(y2-y1)^2+(z2-z1)^2]
证明很简单,套用两次勾股定理
两次勾股定理的套用:
第一次套用勾股定理:在三维坐标中,首先计算两点在平面坐标中的距离,也就是X,Y轴上的平面距离,这时第一次套用勾股定理计算出两点间的平面距离。
第二次套用勾股定理:已经计算出两点在X,Y轴上的平面距离,再计算出两点在Z轴上的垂直距离:Z1-Z2。这时就可以再次套用勾股定理计算出两点在三维坐标中的距离了。即:|AB|=√[(x2-x1)^2+(y2-y1)^2+(z2-z1)^2]

r=a(1-sinθ)

解析过程:

r=a(1-sinθ)这个函数有两个变量,可对a赋值,然后进行求解。

分别是a=1、a=2、a=3。

相交于原点的两条数轴,构成了平面放射坐标系。如两条数轴上的度量单位相等,则称此放射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。

扩展资料:

二维的直角坐标系是由两条相互垂直、0 点重合的数轴构成的。在平面内,任何一点的坐标是根据数轴上对应的点的坐标设定的。

在平面内,任何一点与坐标的对应关系,类似于数轴上点与坐标的对应关系。采用直角坐标,几何形状可以用代数公式明确的表达出来。几何形状的每一个点的直角坐标必须遵守这代数公式。

如果两个点的坐标参照系相同的话,对于同一平面内(即x、y相同Z相同)计算原理就按:两点坐标点X值之差的平方加Y值之差的平方后再开平方。如果不在同一平面内(即x、y相同Z不相同),那么就是:两点坐标点X值之差的平方加Y值之差的平方再加Z值之差的平方后再开平方。如果两个点的坐标参照系不相同的话,建议先把坐标系统一后,再按照上述方法解决。祝你好运!


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12935276.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存