你好 我想问一下p值到底要怎么算 统计学 拜托!

你好 我想问一下p值到底要怎么算 统计学 拜托!,第1张

P 值即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P 值,一般以P < 005 为显著, P <001 为非常显著,其含义是样本间的差异由抽样误差所致的概率小于005 或001。实际上,P 值不能赋予数据任何重要性,只能说明某事件发生的机率。 P < 001 时样本间的差异比P < 005 时更大,这种说法是错误的。统计结果中显示Pr > F,也可写成Pr( >F),P = P{ F005 > F}或P = P{ F001 > F}。 下面的内容列出了P值计算方法。 (1) P值是: 1) 一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率。 2) 拒绝原假设的最小显著性水平。 3) 观察到的(实例的) 显著性水平。 4) 表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法。 (2) P 值的计算: 一般地,用X 表示检验的统计量,当H0 为真时,可由样本数据计算出该统计量的值C ,根据检验统计量X 的具体分布,可求出P 值。具体地说: 左侧检验的P 值为检验统计量X 小于样本统计值C 的概率,即 = P{ X < C} 右侧检验的P 值为检验统计量X 大于样本统计值C 的概率 = P{ X > C} 双侧检验的P 值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍: P = 2P{ X > C} (当C位于分布曲线的右端时) 或P = 2P{ X< C} (当C 位于分布曲线的左端时) 。若X 服从正态分布和t分布,其分布曲线是关于纵轴对称的,故其P 值可表示为P = P{| X| > C} 。 计算出P 值后,将给定的显著性水平α与P 值比较,就可作出检验的结论: 如果α > P 值,则在显著性水平α下拒绝原假设。 如果α ≤ P 值,则在显著性水平α下接受原假设。 在实践中,当α = P 值时,也即统计量的值C 刚好等于临界值,为慎重起见,可增加样本容量,重新进行抽样检验。

如果是
双侧检验
,其
P值
通常是在单侧的基础上乘以2的。当然这一前提是你的
统计量
服从的是对称分布,比如
正态分布

t分布
等。

P值的计算公式是:

=2[1-Φ(z0)] 当被测假设H1为p不等于p0时; 

=1-Φ(z0)  当被测假设H1为p大于p0时; 

=Φ(z0)   当被测假设H1为p小于p0时; 

总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要根据P值的大小和实际问题来解决。

统计学中回归分析的主要内容为:

1、从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。

2、对这些关系式的可信程度进行检验。

1、t指的是T检验,亦称student t检验(Student's t test),主要用于样本含量较小(n<30),总体标准差σ未知的正态分布资料。

计算:t的检验是双侧检验,只要T值的绝对值大于临界值就是不拒绝原假设。

2、P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。

计算:概率定义为:P(A)=m/n,其中n表示该试验中所有可能出现的基本结果的总数目。m表示事件A包含的试验基本结果数。

统计学是关于认识客观现象总体数量特征和数量关系的科学。它是通过搜集、整理、分析统计资料,认识客观现象数量规律性的方法论科学。由于统计学的定量研究具有客观、准确和可检验的特点,所以统计方法就成为实证研究的最重要的方法,广泛适用于自然、社会、经济、科学技术各个领域的分析研究。

参考资料:

百度百科-统计学

P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。

总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。

计算:

为理解P值的计算过程,用Z表示检验的统计量,ZC表示根据样本数据计算得到的检验统计量值。

1、左侧检验

P值是当

时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值

2、右侧检验

P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值

3、双侧检验

P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值

扩展资料

美国统计协会公布了P值使用的几大准则:

准则1:P值可以表达的是数据与一个给定模型不匹配的程度

这条准则的意思是说,我们通常会设立一个假设的模型,称为“原假设”,然后在这个模型下观察数据在多大程度上与原假设背道而驰。P值越小,说明数据与模型之间越不匹配。

准则2:P值并不能衡量某条假设为真的概率,或是数据仅由随机因素产生的概率。

这条准则表明,尽管研究者们在很多情况下都希望计算出某假设为真的概率,但P值的作用并不是这个。P值只解释数据与假设之间的关系,它并不解释假设本身。

准则3:科学结论、商业决策或政策制定不应该仅依赖于P值是否超过一个给定的阈值。

这一条给出了对决策制定的建议:成功的决策取决于很多方面,包括实验的设计,测量的质量,外部的信息和证据,假设的合理性等等。仅仅看P值是否小于005是非常具有误导性的。

准则4:合理的推断过程需要完整的报告和透明度。

这条准则强调,在给出统计分析的结果时,不能有选择地给出P值和相关分析。举个例子来说,某项研究可能使用了好几种分析的方法。

而研究者只报告P值最小的那项,这就会使得P值无法进行解释。相应地,声明建议研究者应该给出研究过程中检验过的假设的数量,所有使用过的方法和相应的P值等。

准则5:P值或统计显著性并不衡量影响的大小或结果的重要性。

这句话说明,统计的显著性并不代表科学上的重要性。一个经常会看到的现象是,无论某个效应的影响有多小,当样本量足够大或测量精度足够高时,P值通常都会很小。反之,一些重大的影响如果样本量不够多或测量精度不够高,其P值也可能很大。

准则6:P值就其本身而言,并不是一个非常好的对模型或假设所含证据大小的衡量。

简而言之,数据分析不能仅仅计算P值,而应该探索其他更贴近数据的模型。

声明之后还列举出了一些其他的能对P值进行补充的分析方手段,比如置信区间,贝叶斯方法,似然比,FDR(False Discovery Rate)等等。这些方法都依赖于一些其他的假定,但在一些特定的问题中会比P值更为直接地回答诸如“哪个假定更为正确”这样的问题。

声明最后给出了对统计实践者的一些建议:好的科学实践包括方方面面,如好的设计和实施,数值上和图形上对数据进行汇总,对研究中现象的理解,对结果的解释,完整的报告等等——科学的世界里,不存在哪个单一的指标能替代科学的思维方式。

参考资料来源:百度百科-P值

统计学意义(p值)ZT
结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=005提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)在许多研究领域,005的p值通常被认为是可接受错误的边界水平。
在最后结论中判断什么样的显著性水平具有统计学意义,不可避免地带有武断性。换句话说,认为结果无效而被拒绝接受的水平的选择具有武断性。实践中,最后的决定通常依赖于数据集比较和分析过程中结果是先验性还是仅仅为均数之间的两两>比较,依赖于总体数据集里结论一致的支持性证据的数量,依赖于以往该研究领域的惯例。通常,许多的科学领域中产生p值的结果≤005被认为是统计学意义的边界线,但是这显著性水平还包含了相当高的犯错可能性。结果005≥p>001被认为是具有统计学意义,而001≥p≥0001被认为具有高度统计学意义。但要注意这种分类仅仅是研究基础上非正规的判断常规。
所有的检验统计都是正态分布的吗并不完全如此,但大多数检验都直接或间接与之有关,可以从正态分布中推导出来,如t检验、f检验或卡方检验。这些检验一般都要求:所分析变量在总体中呈正态分布,即满足所谓的正态假设。许多观察变量的确是呈正态分布的,这也是正态分布是现实世界的基本特征的原因。当人们用在正态分布基础上建立的检验分析非正态分布变量的数据时问题就产生了,(参阅非参数和方差分析的正态性检验)。这种条件下有两种方法:一是用替代的非参数检验(即无分布性检验),但这种方法不方便,因为从它所提供的结论形式看,这种方法统计效率低下、不灵活。另一种方法是:当确定样本量足够大的情况下,通常还是可以使用基于正态分布前提下的检验。后一种方法是基于一个相当重要的原则产生的,该原则对正态方程基础上的总体检验有极其重要的作用。即,随着样本量的增加,样本分布形状趋于正态,即使所研究的变量分布并不呈正态。

P值其实就是按照抽样分布计算的一个概率值,这个值是根据检验统计量计算出来的。通过直接比较P值与给定的显著性水平a的大小就可以知道是否拒绝假设,显然这就代替了比较检验统计量的值与临界值的大小的方法。

而且通过这种方法,我们还可以知道在P值小于a的情况下犯第一类错误的实际概率是多少, P= 003< a= 005,那么拒绝假设,这一决策可能犯错误的概率是003。需要指出的是,如果P> a,那么假设不被拒绝,在这种情况下,第一类错误并不会发生。

T检验中的P值是接受两均值存在差异这个假设可能犯错误的概率。例如:如果零假设是两个总体的均值相等(u1= u2),但是从相应的两个样本中所计算出的样本的均值不相等,有一定的“差异”。

如果根据这个“差异”值计算出p< 001,那么就是说,如果零假设是正确的,即两个总体的均值相等,那么在样本的均值之间产生了像本例中这样大的差异的概率小于001。

也就是说,产生像这两个样本均值这样大的差异的原因是随机发生的,而不是由于它们所来自的总体本来的均值就不相等,出现这种差异结果的概率是< 001。

扩展资料

P值的作用:

P值可以用来进行假设检验的决策,如果P值比显著性水平a小,检验统计量的值就是在拒绝域内。同样,如果P值大于或等于显著性水平a,检验统计量的值就不再拒绝域内。在上例咖啡问题中, P值为00038小于显著性水平a=001,说明应该拒绝原假设。

多个样本均数间的两两比较称多重比较,如果用两个样本均数比较的t检验进行多重比较,将会加大犯I类错误的概率。

例如有4个样本,两两组合数为(24)= 6,若用t检验做6次,且每次比较的检验水准选为a=005,则每次比较不犯I类错误的概率为(1- 005)6次均不犯I类错误的概率为(1- 005)6,这是总的检验水准变为1- (1- 005)6= 026,比005大多了。

因此,许多统计学家得出多重比较不适用t检验。所谓不能进行t检验的关键原因是由于检验次数增多从而获得全部检验正确的概率就会下降,即犯I类错误的概率上升了,而不是t检验本身的缺陷。

如果我们做一次新药临床试验的数据分析,在整个分析过程中进行了n次试验,那么根据这个推论,我们整个分析全对的概率可能早就所剩无几了。此时,如果犯I类错误的概率不应该由检验水平a计算,而是按照每次试验得到的P值算得,这样就会得到全部检验结果犯错误的实际概率了。

参考资料来源:百度百科-t检验


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12959670.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存