显著性水平大于0.05是不显著。
显著性水平是假设检验中的一个概念,是指当原假设为正确时人们却把它拒绝了的概率或风险。它是公认的小概率事件的概率值,必须在每一次统计检验之前确定,通常取α=0.05或α=0.01。
这表明,当作出接受原假设的决定时,其正确的可能性(概率)为95%或99%。显著性水平代表的意义是在一次试验中小概率事物发生的可能性大小。
对显著水平的理解必须把握以下二点:
1、显著性水平不是一个固定不变的数值,依据拒绝区间所可能承担的风险来决定。
2、统计上所讲的显著性与实际生活工作中的显著性是不一样的。
显著性水平是估计总体参数落在某一区间内,可能犯错误的概率,用α表示。显著性是对差异的程度而言的,程度不同说明引起变动的原因也有不同:一类是条件差异,一类是随机差异。它是在进行假设检验时事先确定一个可允许的作为判断界限的小概率标准。显著性水平是在进行假设检验时事先确定一个可允许的作为判断界限的小概率标准。检验中,依据显著性水平大小把概率划分为二个区间,小于给定标准的概率区间称为拒绝区间,大于这个标准则为接受区间。事件属于接受区间,原假设成立而无显著性差异;事件属于拒绝区间,拒绝原假设而认为有显著性差异。对显著水平的理解必须把握以下二点:
1、显著性水平不是一个固定不变的数值,依据拒绝区间所可能承担的风险来决定。
2、统计上所讲的显著性与实际生活工作中的显著性是不一样的。
显著性检验的四种方法如下:
1、t检验
适用于计量资料、正态分布、方差具有齐性的两组间小样本比较。包括配对资料间、样本与均数间、两样本均数间比较三种。
2、t'检验
应用条件与t检验大致相同,但t′检验用于两组间方差不齐时,t′检验的计算公式实际上是方差不齐时t检验的校正公式。
3、U检验
应用条件与t检验基本一致,只是当大样本时用U检验,而小样本时则用t检验,t检验可以代替U检验。
4、方差分析
用于正态分布、方差齐性的多组间计量比较,常见的有单因素分组的多样本均数比较及双因素分组的多个样本均数的比较。方差分析首先是比较各组间总的差异,如总差异有显著性,再进行组间的两两比较,组间比较用q检验或LST检验等。
5、卡方检验
卡方检验是计数资料主要的显著性检验方法。用于两个或多个百分比(率)的比较。常见以下几种情况:四格表资料、配对资料、多于2行乘以2列资料及组内分组X2检验。
6、零反应检验
用于计数资料。是当实验组或对照组中出现概率为0或100%时,X2检验的一种特殊形式。属于直接概率计算法。其中非参数统计方法包括符号检验、秩和检验和Ridit检验,共同特点是简便、快捷、实用。可用于各种非正态分布的资料、未知分布资料及半定量资料的分析。
其主要缺点是容易丢失数据中包含的信息。所以凡是正态分布或可通过数据转换成正态分布者尽量不用这些方法。另外,Hotelling检验用于计量资料、正态分布、两组间多项指标的综合差异显著性检验。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)