概率论c上1下3怎么算

概率论c上1下3怎么算,第1张

C(n,m) ----------n是下标 ,m是上标 (C上面m,下面n)
C(n,m) 表示 n选m的组合
等于从n开始连续递减的m个自然数的积除以从1开始连续递增的m个自然数的积
-----------------------例:
C(8,3)=876/(123) =56
分子是从8开始连续递减的3个自然数的积
分母是从1开始连续递增的3个自然数的积
C(4,2)=43/(12) =6
分子是从4开始连续递减的2个自然数的积
分母是从1开始连续递增的2个自然数的积
C(5,1)=5/1 =5
分子是从5开始连续递减的1个自然数的积
分母是从1开始连续递增的1个自然数的积

计算公式:

;C(n,m)=C(n,n-m)。(n≥m)

C-Combination 组合数 ;

A-Arrangement 排列数(在旧教材为P-Permutation);

N-Number 元素的总个数;

M- 参与选择的元素个数;

!- Factorial阶乘。

举例:

某城市有4条东西街道和6条南北的街道,街道之间的间距相同,若规定只能向东或向北两个方向沿图中路线前进,则从M到N有多少种不同的走法

分析:对实际背景的分析可以逐层深入:

(一)从M到N必须向上走三步,向右走五步,共走八步;

(二)每一步是向上还是向右,决定了不同的走法;

(三)事实上,当把向上的步骤决定后,剩下的步骤只能向右;

从而,任务可叙述为:从八个步骤中选出哪三步是向上走,就可以确定走法数。

∴ 本题答案为:C(8,3)=56。

扩展资料:

一、加法原理和分类计数法

1、加法原理:做一件事,完成它可以有n类办法,在 第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

2、第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。

3、分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。

二、乘法原理和分步计数法

1、乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。

2、合理分步的要求

任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。

3、与后来的离散型随机变量也有密切相关。

参考资料来源:百度百科-排列组合  

一、排列组合计算方法如下:排列也可以表示成P

排列A(n,m)=n×(n-1)(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)

组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;

例如:

A(4,2)=4!/2!=43=12

C(4,2)=4!/(2!2!)=43/(21)=6

二、概率中的C和P区别:

1、表示不同

C表示组合方法,比如有3个人甲乙丙,抽出2个人去参加活动的方法有C(3,2)=3种,分别是甲乙、甲丙、乙丙,这个不具有顺序性,只有组合的方法。

P表示排列方法,表示一些物体按顺序排列起来,总共的方法是多少。

2、性质不同

公式P是指排列,从N个元素取R个进行排列(即排序)。

公式C是指组合,从N个元素取R个,不进行排列(即不排序)。

扩展资料

在概率论发展的早期,人们就注意到古典概型仅考虑试验结果只有有限个的情况是不够的,还必须考虑试验结果是无限个的情况。为此可把无限个试验结果用欧式空间的某一区域S表示,其试验结果具有所谓“均匀分布”的性质,关于“均匀分布”的精确定义类似于古典概型中“等可能”只一概念。

假设区域S以及其中任何可能出现的小区域A都是可以度量的,其度量的大小分别用μ(S)和μ(A)表示。如一维空间的长度,二维空间的面积,三维空间的体积等。并且假定这种度量具有如长度一样的各种性质,如度量的非负性、可加性等。

参考资料来源:百度百科-概率

概率公式:C(n,k)=n(n-1)(n-2)(n-k+1)/k!,其中k≤n。C表示组合数。

概率公式是什么 c表示什么

C表示组合数。

C(n,m) 表示n选m的组合数,其中n是下标 , m是上标 (C上面m,下面n)。

nCk是一个整体,是n个元素中,取k个元素的取法的个数,也叫n个元素中,取k

个k组合数,(C代表组合),算法是:

nCk=n!/k!(n-k)!=n(n-1)……(n-k+1)/k!

等于从n开始连续递减的m个自然数的积除以从1开始连续递增的m个自然数的积。

该概率公式的推导过程:

在这个证明中,表示n次实验中,成功的k次,取法的个数。

每次取定后,k次成功,n-k次失败,概率用乘法P=p^k(1-p)^(n-k)

总共有nCk个取法,即nCk个情况,概率用加法,每个情况的概率又相同,所以

成为nCk倍。

求组合数C的方法

1、当n,m都很小的时候可以利用杨辉三角直接求。

C(n,m)=C(n-1,m)+C(n-1,m-1);

2、利用乘法逆元

乘法逆元:(a/b)%mod=a(b^(mod-2)) mod为素数。

逆元可以利用扩展欧几里德或欧拉函数求得。

3、当n和m比较大,mod是素数且比较小的时候(10^5左右),通过Lucas定理计算


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12961300.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存