概率公式:C(n,k)=n(n-1)(n-2)(n-k+1)/k!,其中k≤n。C表示组合数。
概率公式是什么 c表示什么
C表示组合数。
C(n,m) 表示n选m的组合数,其中n是下标 , m是上标 (C上面m,下面n)。
nCk是一个整体,是n个元素中,取k个元素的取法的个数,也叫n个元素中,取k
个k组合数,(C代表组合),算法是:
nCk=n!/k!(n-k)!=n(n-1)……(n-k+1)/k!
等于从n开始连续递减的m个自然数的积除以从1开始连续递增的m个自然数的积。
该概率公式的推导过程:
在这个证明中,表示n次实验中,成功的k次,取法的个数。
每次取定后,k次成功,n-k次失败,概率用乘法P=p^k(1-p)^(n-k)
总共有nCk个取法,即nCk个情况,概率用加法,每个情况的概率又相同,所以
成为nCk倍。
求组合数C的方法1、当n,m都很小的时候可以利用杨辉三角直接求。
C(n,m)=C(n-1,m)+C(n-1,m-1);
2、利用乘法逆元
乘法逆元:(a/b)%mod=a(b^(mod-2)) mod为素数。
逆元可以利用扩展欧几里德或欧拉函数求得。
3、当n和m比较大,mod是素数且比较小的时候(10^5左右),通过Lucas定理计算
组合(combination),数学的重要概念之一。从n个不同元素中每次取出m个不同元素(0≤m≤n),不管其顺序合成一组,称为从n个元素中不重复地选取m个元素的一个组合。所有这样的组合的总数称为组合数,这个组合数的计算公式为
或者
n元集合A中不重复地抽取m个元素作成的一个组合实质上是A的一个m元子集合。
C(12)=2。
扩展资料
排列组合计算方法如下:
排列A(n,m)=n×(n-1)(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如:
A(4,2)=4!/2!=43=12
C(4,2)=4!/(2!2!)=43/(21)=6
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)