iOS Swift3.0和2.3的区别

iOS Swift3.0和2.3的区别,第1张

这个应该很好处理啊 首先创建两个 tableView 然后设置 frame,让一个在上面,一个在下面,这个你应该可以做到 然后就是 delegate 和 dataSource 的问题,两个都指向 self,那回调的时候如何区分 可以这样判断 if tableViewisEqual(selftableView1) { /// 执行第一个 table 的代码 } else { /// 执行第一个 table 的代码 }

个人感觉现在OC是主流,但是会被Swift逐渐取代。一个很关键的原因是……Swift的语法和java比较像……Android程序员想转iOS学Swift会容易得多,再加上苹果力推,Swift很多特性会逐步赶超OC,也会被公司技术部门青睐。

查看文档我们发现,Swift的数组是一个结构体类型,它遵守了CollectionType、MutableCollectionType、_DstructorSafeContainer协议,其中最重要的就是CollectionType协议,数组的一些主要功能都是通过这个协议实现的。而CollectionType协议又遵守Indexable和SequenceType这两个协议。而在这两个协议中,SequenceType协议是数组、字典等集合类型最重要的协议,在文档中解释了SequenceType是一个可以通过forin循环迭代的类型,实现了这个协议,就可以forin循环了。
A type that can be iterated with a forin loop
而SequenceType是建立在GeneratorType基础上的,sequence需要GeneratorType来告诉它如何生成元素。
GeneratorType
GeneratorType协议有两部分组成:
它需要有一个Element关联类型,这也是它产生的值的类型。
它需要有一个next方法。这个方法返回Element的可选对象。通过这个方法就可以一直获取下一个元素,直到返回nil,就意味着已经获取到了所有元素。
/// Encapsulates iteration state and interface for iteration over a
/// sequence
///
/// - Note: While it is safe to copy a generator, advancing one
/// copy may invalidate the others
///
/// Any code that uses multiple generators (or `for``in` loops)
/// over a single sequence should have static knowledge that the
/// specific sequence is multi-pass, either because its concrete
/// type is known or because it is constrained to `CollectionType`
/// Also, the generators must be obtained by distinct calls to the
/// sequence's `generate()` method, rather than by copying
public protocol GeneratorType {
/// The type of element generated by `self`
associatedtype Element
/// Advance to the next element and return it, or `nil` if no next
/// element exists
///
/// - Requires: `next()` has not been applied to a copy of `self`
/// since the copy was made, and no preceding call to `selfnext()`
/// has returned `nil` Specific implementations of this protocol
/// are encouraged to respond to violations of this requirement by
/// calling `preconditionFailure("")`
@warn_unused_result
public mutating func next() -> SelfElement
}
我把自己实现的数组命名为MYArray,generator为MYArrayGenerator,为了简单,这里通过字典来存储数据,并约定字典的key为从0开始的连续数字。就可以这样来实现GeneratorType:
/// 需保准dic的key是从0开始的连续数字
struct MYArrayGenerator: GeneratorType {
private let dic: [Int: T]
private var index = 0
init(dic: [Int: T]) {
selfdic = dic
}
mutating func next() -> T {
let element = dic[index]
index += 1
return element
}
}
这里通过next方法的返回值,隐式地为Element赋值。显式地赋值可以这样写typealias Element = T。要使用这个生成器就非常简单了:
let dic = [0: "XiaoHong", 1: "XiaoMing"]
var generator = MYArrayGenerator(dic: dic)
while let elment = generatornext() {
print(elment)
}
// 打印的结果:
// XiaoHong
// XiaoMing
SequenceType
有了generator,接下来就可以实现SequenceType协议了。SequenceType协议也是主要有两部分:
需要有一个Generator关联类型,它要遵守GeneratorType。
要实现一个generate方法,返回一个Generator。同样的,我们可以通过制定generate方法的方法类型来隐式地设置Generator:
struct MYArray: SequenceType {
private let dic: [Int: T]
func generate() -> MYArrayGenerator {
return MYArrayGenerator(dic: dic)
}
}
这样我们就可以创建一个MYArray实例,并通过for循环来迭代:
let dic = [0: "XiaoHong", 1: "XiaoMing", 2: "XiaoWang", 3: "XiaoHuang", 4: "XiaoLi"]
let array = MYArray(dic: dic)
for value in array {
print(value)
}
let names = arraymap { $0 }
当然,目前这个实现还存在很大的隐患,因为传入的字典的key是不可知的,虽然我们限定了必须是Int类型,但无法保证它一定是从0开始,并且是连续,因此我们可以通过修改初始化方法来改进:
init(elements: T) {
dic = [Int: T]()
elementsforEach { dic[diccount] = $0 }
}
然后我们就可以通过传入多参数来创建实例了:
let array = MYArray(elements: "XiaoHong", "XiaoMing", "XiaoWang", "XiaoHuang", "XiaoLi")
再进一步,通过实现ArrayLiteralConvertible协议,我们可以像系统的Array数组一样,通过字面量来创建实例:
let array = ["XiaoHong", "XiaoMing", "XiaoWang", "XiaoHuang", "XiaoLi"]
最后还有一个数组的重要特性,就是通过下标来取值,这个特性我们可以通过实现subscript方法来实现:
extension MYArray {
subscript(idx: Int) -> Element {
precondition(idx < diccount, "Index out of bounds")
return dic[idx]!
}
}
print(array[3]) // XiaoHuang
至此,一个自定义的数组就基本实现了,我们可以通过字面量来创建一个数组,可以通过下标来取值,可以通过for循环来遍历数组,可以使用map、forEach等高阶函数。
小结
要实现一个数组的功能,主要是通过实现SequenceType协议。SequenceType协议有一个Generator实现GeneratorType协议,并通过Generator的next方法来取值,这样就可以通过连续取值,来实现for循环遍历了。同时通过实现ArrayLiteralConvertible协议和subscript,就可以通过字面量来创建数组,并通过下标来取值。
CollectionType
上面我们为了弄清楚SequenceType的实现原理,通过实现SequenceType和GeneratorType来实现数组,但实际上Swift系统的Array类型是通过实现CollectionType来获得这些特性的,而CollectionType协议又遵守Indexable和SequenceType这两个协议。并扩展了两个关联类型Generator和SubSequence,以及9个方法,但这两个关联类型都是默认值,而且9个方法也都在协议扩展中有默认实现。因此,我们只需要为Indexable协议中要求的 startIndex 和 endIndex 提供实现,并且实现一个通过下标索引来获取对应索引的元素的方法。只要我们实现了这三个需求,我们就能让一个类型遵守 CollectionType 了。因此这个自定义的数组可以这样实现:
struct MYArray: CollectionType {
private var dic: [Int: Element]
init(elements: Element) {
dic = [Int: Element]()
elementsforEach { dic[diccount] = $0 }
}
var startIndex: Int { return 0 }
var endIndex: Int { return diccount }
subscript(idx: Int) -> Element {
precondition(idx < endIndex, "Index out of bounds")
return dic[idx]!
}
}
extension MYArray: ArrayLiteralConvertible {
init(arrayLiteral elements: Element) {
dic = [Int: Element]()
elementsforEach { dic[diccount] = $0 }
}
}


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/13075218.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-30
下一篇 2023-05-30

发表评论

登录后才能评论

评论列表(0条)

保存