如何用excel做线性回归分析

如何用excel做线性回归分析,第1张

方法/步骤
厘清各个数据之间的逻辑关系,搞清楚哪个是自变量,哪个又是因变量。如附图所示,这里我们要对人均gdp和城市化水平进行分析,建立符合两者之间的模型,假定人均gdp为自变量,城市化水平是因变量。
由于我们不知道两者之间的具体关系如何,所以我们利用数据生成一个散点图判断其可能符合的模型。如附图1所示为生成的散点图,一般横坐标为自变量,纵坐标为因变量,所以我们需要将x轴,y轴的坐标对调一下,这里采用最简单的方法,将因变量移动到自变量的右边一列即可,如附图2所示。
由步骤2的散点图,我们可以判断自变量和因变量之间可能呈线性关系,我们可以添加线性趋势线进一步加以判断。如附图1所示。也可以添加指数,移动平均等趋势线进行判断。很明显数据可能符合线性关系,所以下面我们对数据进行回归分析。
选择菜单栏的“数据分析”-->“回归”。具体 *** 作如附图所示。
步骤4进行的回归分析输出结果如附图所示。回归模型是否有效,可以参见p指,如果p<0001则极端显著,如果0001<p<001非常显著,001<p<005则一般显著,p>005则不显著。本例的p值均小于0001,所以属于极端显著,故回归模型是有效的。根据回归模型的结果可知
y = 5E-06x + 05876R² = 09439
如附图2所示。

1、新建并打开excel表格,
2、首先添加数据分析插件,点击左上角按钮,出现菜单页面,选中右下角“EXCEL选项”按钮,点击,
3、然后点击“加载项”选项,选中“分析工具库”,点击下方"转到"按钮,
4、然后出现excel加载宏界面,在”分析工具库“前方框内打勾,点击确定。
5、经过上一步已经成功添加”数据分析插件“,在”数据“-”数据分析“下可以找到,
6、然后点击”数据分析“,可以找到相关的分析方法,如 回归分析,方差分析,相关分析等。

1五个一。Excel数据分析方法1快速填充:选择单元格B2,输入馒头,回车定位到单元格B3,按CTRL+E22列:选择A2:A20数据区,数据选项卡和列。接下来,选择逗号作为分隔符,然后选择$2$2作为目标区域。3分组比较法:分组后,我们可以对数据进行汇总和计算。常见的方法是通过求和、平均值、百分比、技术将同类数据汇总成一个数据,减少数据量。4数据透视表:单击“插入”选项卡中的数据透视表以打开对话框,确认选择,然后单击“确定”。然后,您可以在新工作表中看到数据透视表视图。只需将表格字段拖动到行、列、值中,就可以得到相应的数据统计表。5VBA自定义函数:Alt+F11打开VBE编辑器,插入模块,进入下面的自定义函数。Excel主要用于数据的统计分析,门槛低,可以方便的转换成报表,定位于小规模的数据处理。Access主要用于数据存储,门槛较高,可以建立数据库管理系统,可以方便数据的快速查找和激活,定位于大规模数据处理。

用EXCEL做回归分析主要有图表法和函数法:1、图表法:选择参与一元线性回归两列数据(自变量x应在应变量y的左侧),插入图表,选择散点图。选择图表中的数据系列,右击,添加趋势线,点击“选项”选项卡,勾选“显示公式”、显示R平方值。注意显示出的R2值为R的平方,需要用SQRT()函数,计算出R值。2、函数法若X值序列在A1:A100单元格,Y值序列在B1:B100单元格,则线性公式的截距b=INTERCEPT(B1:B100,A1:A100)斜率k=SLOPE(B1:B100,A1:A100)相关系数R=CORREL(A1:A100,B1:B100)或=CORREL(B1:B100,A1:A100)上述两种方法都可以做回归分析,同时结合图表和函数会取得更满意的效果。

这是一个很典型的线性拟合问题,手工计算就是采用最小二乘法求出拟合直线的待定参数,同时可以得出R的值,也就是相关系数的大小。在Excel中,可以采用先绘图再添加趋势线的方法完成前两步的要求。
选择成对的数据列,将它们使用“X、Y散点图”制成散点图。
在数据点上单击右键,选择“添加趋势线”-“线性”,并在选项标签中要求给出公式和相关系数等,可以得到拟合的直线。
由图中可知,拟合的直线是y=15620x+66061,R2的值为09994。
因为R2 >099,所以这是一个线性特征非常明显的实验模型,即说明拟合直线能够以大于9999%地解释、涵盖了实测数据,具有很好的一般性,可以作为标准工作曲线用于其他未知浓度溶液的测量。
为了进一步使用更多的指标来描述这一个模型,我们使用数据分析中的“回归”工具来详细分析这组数据。
在选项卡中显然详细多了,注意选择X、Y对应的数据列。“常数为零”就是指明该模型是严格的正比例模型,本例确实是这样,因为在浓度为零时相应峰面积肯定为零。先前得出的回归方程虽然拟合程度相当高,但是在x=0时,仍然有对应的数值,这显然是一个可笑的结论。所以我们选择“常数为零”。
“回归”工具为我们提供了三张图,分别是残差图、线性拟合图和正态概率图。重点来看残差图和线性拟合图。
在线性拟合图中可以看到,不但有根据要求生成的数据点,而且还有经过拟和处理的预测数据点,拟合直线的参数会在数据表格中详细显示。本实例旨在提供更多信息以起到抛砖引玉的作用,由于涉及到过多的专业术语,请各位读者根据实际,在具体使用中另行参考各项参数,此不再对更多细节作进一步解释。
残差图是有关于世纪之与预测值之间差距的图表,如果残差图中的散点在中州上下两侧零乱分布,那么拟合直线就是合理的,否则就需要重新处理。
更多的信息在生成的表格中,详细的参数项目完全可以满足回归分析的各项要求。下图提供的是拟合直线的得回归分析中方差、标准差等各项信息。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/13083870.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-30
下一篇 2023-05-30

发表评论

登录后才能评论

评论列表(0条)

保存