判别方法是确定待判样品归属于哪一组的方法,可分为参数法和非参数法,也可以根据资料的性质分为定性资料的判别分析和定量资料的判别分析。此处给出的分类主要是根据采用的判别准则分出几种常用方法。除最大似然法外,其余几种均适用于连续性资料。
1)最大似然法:用于自变量均为分类变量的情况,该方法建立在独立事件概率乘法定理的基础上,根据训练样品信息求得自变量各种组合情况下样品被封为任何一类的概率。当新样品进入是,则计算它被分到每一类中去的条件概率(似然值),概率最大的那一类就是最终评定的归类。
2)距离判别:其基本思想是有训练样品得出每个分类的重心坐标,然后对新样品求出它们离各个类别重心的距离远近,从而归入离得最近的类。也就是根据个案离母体远近进行判别。最常用的距离是马氏距离,偶尔也采用欧式距离。距离判别的特点是直观、简单,适合于对自变量均为连续变量的情况下进行分类,且它对变量的分布类型无严格要求,特别是并不严格要求总体协方差阵相等。
3)Fisher判别:亦称典则判别,是根据线性Fisher函数值进行判别,通常用于梁祝判别问题,使用此准则要求各组变量的均值有显著性差异。该方法的基本思想是投影,即将原来在R维空间的自变量组合投影到维度较低的D维空间去,然后在D维空间中再进行分类。投影的原则是使得每一类的差异尽可能小,而不同类间投影的离差尽可能大。Fisher判别的优势在于对分布、方差等都没有任何限制,应用范围比较广。另外,用该判别方法建立的判别方差可以直接用手工计算的方法进行新样品的判别,这在许多时候是非常方便的。
4)Bayes判别:许多时候用户对各类别的比例分布情况有一定的先验信息,也就是用样本所属分类的先验概率进行分析。比如客户对投递广告的反应绝大多数都是无回音,如果进行判别,自然也应当是无回音的居多。此时,Bayes判别恰好适用。Bayes判别就是根据总体的先验概率,使误判的平均损失达到最小而进行的判别。其最大优势是可以用于多组判别问题。但是适用此方法必须满足三个假设条件,即各种变量必须服从多元正态分布、各组协方差矩阵必须相等、各组变量均值均有显著性差异。
综述如下:
1、欧氏距离(Euclidean distance)也称欧几里得度量、欧几里得度量,是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。在二维和三维空间中的欧氏距离的就是两点之间的距离。
缺点:就大部分统计问题而言,欧氏距离是不能令人满意的。(每个坐标对欧氏距离的贡献是同等的。当坐标表示测量值时,它们往往带有大小不等的随机波动,在这种情况下,合理的方法是对坐标加权,使变化较大的坐标比变化较小的坐标有较小的权系数,这就产生了各种距离。
当各个分量为不同性质的量时,“距离”的大小与指标的单位有关。它将样品的不同属性(即各指标或各变量)之间的差别等同看待,这一点有时不能满足实际要求。没有考虑到总体变异对距离远近的影响。
2、马氏距离是由印度统计学家马哈拉诺比斯提出的,表示数据的协方差距离。为两个服从同一分布并且其协方差矩阵为Σ的随机变量与的差异程度:如果协方差矩阵为单位矩阵,那么马氏距离就简化为欧氏距离,如果协方差矩阵为对角阵,则其也可称为正规化的欧氏距离。
它是一种有效的计算两个未知样本集的相似度的方法。对于一个均值为μ,协方差矩阵为Σ的多变量向量,样本与总体的马氏距离为(dm)^2=(x-μ)'Σ^(-1)(x-μ)。在绝大多数情况下,马氏距离是可以顺利计算的,但是马氏距离的计算是不稳定的,不稳定的来源是协方差矩阵,这也是马氏距离与欧式距离的最大差异之处。
优点:它不受量纲的影响,两点之间的马氏距离与原始数据的测量单位无关。(它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重的信息,因为两者是有关联的)并且是尺度无关的(scale-invariant),即独立于测量尺度);由标准化数据和中心化数据(即原始数据与均值之差)计算出的二点之间的马氏距离相同。马氏距离还可以排除变量之间的相关性的干扰。
缺点:夸大了变化微小的变量的作用。受协方差矩阵不稳定的影响,马氏距离并不总是能顺利计算出。
马氏与欧式距离的比较:
1、马氏距离的计算是建立在总体样本的基础上的,这一点可以从上述协方差矩阵的解释中可以得出,也就是说,如果拿同样的两个样本,放入两个不同的总体中,最后计算得出的两个样本间的马氏距离通常是不相同的,除非这两个总体的协方差矩阵碰巧相同;
2、在计算马氏距离过程中,要求总体样本数大于样本的维数,否则得到的总体样本协方差矩阵逆矩阵不存在,这种情况下,用欧氏距离计算即可。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)