线性回归方程公式相关系数r具体如下:
线性回归r2指的是相关系数,一般机器默认的是r2>099,这样才具有可行度和线性关系。 当根据试验数据进行曲线拟合时,试验数据与拟合函数之间的吻合程度,用一个与相关系数有关的一个量‘r平方’来评价,r^2值越接近1,吻合程度越高,越接近0,则吻合程度越低。
扩展知识:
相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础。
通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。决定系数,反应因变量的全部变异能通过回归关系被自变量解释的比例。如R平方为08,则表示回归关系可以解释因变量80%的变异。
换句话说,如果我们能控制自变量不变,则因变量的变异程度会减少80%。相关表示两变量间的相互关系,是双方向的。而回归则表示Y随X而变化,这种关系是单方向的。医学资料中的有些资料用相关表示较适宜。
相关系数是指与某一关系式或是公式等的常系数,相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值范围为[-1,1]。|r|值越大,误差Q越小,变量之间的线性相关程度越高;|r|值越接近0,Q越大,变量之间的线性相关程度越低。
样本相关系数的推导过程
相关系数用于判断样本参数的相关关系,很小,表明样本范围内,两个参数相关关系很弱;显著性水平用于判断总体和样本的一致性,显著性水平很高,表明总体与样本一致性程度较高,总体范围内,两个参数的相关关系也很弱。
相关系数是介于-1和1之间的一个数,描述了各个数据点与直线的偏离程度。通过它可以量度回归线与数据线的拟合度,通常用字幕r表示。
x与y的相关系数可以通过公式Cov(X,Y)/根号(Var[X]Var[Y]),其中Cov(X,Y)为X与Y的协方差,Var[X]为X的方差,Var[Y]为Y的方差。
x与y的相关系数:
1、当相关系数为0时,X和Y两变量无关系。
2、当X的值增大(减小),Y值增大(减小),两个变量为正相关,相关系数在000与100之间。
3、当X的值增大(减小),Y值减小(增大),两个变量为负相关,相关系数在-100与000之间。
相关系数的绝对值越大,相关性越强,相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱。
计算等级相关系数的公式
r = ∑({x-(n+1)/2}{y-(n+1)/2})/√(∑{(x-(n+1)/2)^2} ∑{(y-(n+1)/2)^2 })。
(亦可表为r = 1 - (6∑(x-y)^2 )/(n^3-n))。
原本是为(两随机变量)正态相关而推导的;正态相关面在两随机变量取值中心凸起最高,而在(该两变量)其余取值处则会向各个方向延伸。
在一项特定的试验中:
正态相关面的各种组合都是可能出现的。但x和y的可能取值均在有限区间内,且x, y(一次)只能在其中取到也仅能取到一个值。
因此,由等级相关系数公式表示的x和y的相关关系就需要作进一步的考察。等级相关系数r可能为某分布之一参数的估计量,但这分布为何并不清楚,而r是否为该参数的最佳估计也不清楚。
定义式ρXY=Cov(X,Y)/√[D(X)]√[D(Y)]
公式描述:公式中Cov(X,Y)为X,Y的协方差,D(X)、D(Y)分别为X、Y的方差。
公式
若Y=a+bX,则有:
令E(X) = μ,D(X) = σ
则E(Y) = bμ + a,D(Y) = bσ
E(XY) = E(aX + bX) = aμ + b(σ + μ)
Cov(X,Y) = E(XY) E(X)E(Y) = bσ
相关系数介于区间[-1,1]。当相关系数为-1,表示完全负相关,表明两项资产的收益率变化方向和变化幅度容完全相反。当相关系数为+1时,表示完全正相关,表明两项资产的收益率变化方向和变化幅度完全相同。当相关系数为0时,表示不相关。
r值的绝对值介于0~1之间。通常来说,r越接近1,表示x与y两个量之间的相关程度就越强,反之,r越接近于0,x与y两个量之间的相关程度就越弱。
扩展资料:
相关关系:当一个或几个相互联系的变量取一定的数值时,与之相对应的另一变量的值虽然不确定,但它仍按某种规律在一定的范围内变化。变量间的这种相互关系,称为具有不确定性的相关关系。
⑴完全相关:两个变量之间的关系,一个变量的数量变化由另一个变量的数量变化所惟一确定,即函数关系。
⑵不完全相关:两个变量之间的关系介于不相关和完全相关之间。
⑶不相关:如果两个变量彼此的数量变化互相独立,没有关系。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)