行阶梯形矩阵的秩是什么?

行阶梯形矩阵的秩是什么?,第1张

行阶梯形矩阵的秩是用初等行变换。

这个有很大的作用,(当矩阵是二三阶的时候,行阶梯形矩阵可以求矩阵的值)还可以求矩阵的秩,求齐次方程组的解和非齐次方程组的解,还有求方程组的最大无关组等等都需要行阶梯形,求矩阵的秩一定的化成行阶梯形而且还是行最简形。

矩阵的秩

定理:矩阵的行秩,列秩,秩都相等。

定理:初等变换不改变矩阵的秩。

定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。

定理:矩阵的乘积的秩Rab<=min{Ra,Rb}。

引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。

解题过程如下图:

n阶行列式等于所有取自不同行不同列的n个元素的乘积的代数和,逆序数为偶数时带正号,逆序数为奇数时带负号,共有n!项。

扩展资料

n阶行列式的性质

性质1 行列互换,行列式不变。

性质2 把行列式中某一行(列)的所有元素都乘以一个数K,等于用数K乘以行列式。

性质3 如果行列式的某行(列)的各元素是两个元素之和,那么这个行列式等于两个行列式的和。

性质4 如果行列式中有两行(列)相同,那么行列式为零。(所谓两行(列)相同就是说两行(列)的对应元素都相等)

性质5 如果行列式中两行(列)成比例,那么行列式为零。

行向量组或是列向量组的最大非线性相关向量的个数,也是行列规范化后非零的向量个数。比如(100,010,001)秩就是3,而(111,110,001)秩就是2。

秩也可以理解成矩阵构成的线性方程解的个数a,秩为r,有n=a+r。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。

在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

扩展资料

矩阵的秩

定理:矩阵的行秩,列秩,秩都相等。

定理:初等变换不改变矩阵的秩。

定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。

定理:矩阵的乘积的秩Rab<=min{Ra,Rb};

引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。

当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。

当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。

矩阵的秩是反映矩阵固有特性的一个重要概念。
定义1 在m´n矩阵A中,任意决定k行和k列 (1£k£min{m,n}) 交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。
例如,在阶梯形矩阵 中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。
定义2 A=(aij)m×n的不为零的子式的最大阶数称为矩阵A
的秩,记作rA,或rankA。
特别规定零矩阵的秩为零。
显然rA≤min(m,n) 易得:
若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。
由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)¹ 0;不满秩矩阵就是奇异矩阵,det(A)=0。
由行列式的性质1(15[4])知,矩阵A的转置AT的秩与A的秩是一样的。
例1 计算下面矩阵的秩,
而A的所有的三阶子式,或有一行为零;或有两行成比例,因而所
有的三阶子式全为零,所以rA=2。
矩阵的秩
引理 设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。
定理 矩阵的行秩,列秩,秩都相等。
定理 初等变换不改变矩阵的秩。
定理 矩阵的乘积的秩Rab<=min{Ra,Rb};
>

r(A,B)>=r(A+B)

r(A,B)>=r(B)>=r(AB)

r(AB)与r(A+B)没有直接关系。

矩阵B可逆,AB的秩等于A的秩,那么A可逆的充要条件是A可以写成初等阵的乘积。AB等于B左乘初等矩阵,而左乘初等阵就是对B进行初等行变换,所以它的秩不变。而B可逆的充要条件是B可以写成初等阵的乘积,同理秩不变。

矩阵的秩

定理:矩阵的行秩,列秩,秩都相等。

定理:初等变换不改变矩阵的秩。

定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。

定理:矩阵的乘积的秩Rab<=min{Ra,Rb};

引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。

百度百科-矩阵的秩

rab等于ra说明:R(A)是矩阵A的秩,R(AB),AB是A与B两个矩阵的积,也是一个矩阵,R(AB)就是这个积矩阵的秩。

秩是线性代数术语。在线性代数中,一个矩阵的秩是其非零子式的最高阶数,一个向量组的秩则是其最大无关组所含的向量个数。在解析几何中,矩阵的秩可用来判断空间中两直线、两平面及直线和平面之间的关系。

注意:

使用计算机按上述方法求矩阵的秩时,可能涉及浮点数。此时基本高斯消去(LU分解)可能是不稳定的,可以使用奇异值分解(SVD)或有支点(pivoting)的QR分解。秩的数值判定要求对一个值比如来自 SVD 的一个奇异值是否为零的依据,实际选择依赖于矩阵和应用二者。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/13127874.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-06
下一篇 2023-06-06

发表评论

登录后才能评论

评论列表(0条)

保存