概率论计算

概率论计算,第1张

概率论,一个C上下个一个数字的算法:Cmn=m!/[n!(m-n)!] m在下,n在上n!代表n的阶乘=123……n。:一、概率的严格定义:E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(·)是一个集合函数,P(·)要满足下列条件: (1)非负性:对于每一个事件A,有P(A)≥0; (2)规范性:对于必然事件S,有P(S)=1; (3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+ 二、概率论是研究随机性或不确定性等现象的数学。更精确地说,概率论是用来模拟实验在同一环境下会产生不同结果的情况。在自然界和人类社会中,存在大量的随机现象,而概率是衡量该现象发生的可能性的量度。

三个概率叠加计算:

ABC三个事件,证明P(AUBUC)。

令D=AUB,P(AUBUC)=P(DUC)=P(D)+P(C)-P(DC)。

P(D)=P(A)+P(B)-P(AB)。

P(DC)=P(ACUBC)=P(AC)+P(BC)-P(ABC)。

概率

是度量偶然事件发生可能性的数值。假如经过多次重复试验(用X代表),偶然事件(用A代表)出现了若干次(用Y代表)。以X作分母,Y作分子,形成了数值(用P代表)。在多次试验中,P相对稳定在某一数值上,P就称为A出现的概率。如偶然事件的概率是通过长期观察或大量重复试验来确定,则这种概率为统计概率或经验概率。

C(3,4)=4!/3!1!=4 C(k,n)=n!/k!(n-k)! 注:n!=n(n-1)(n-2)1
记的话你就记成稍大数的阶层除以(稍小数的阶层乘以之差的阶层)

c的计算公式是:C(n,m)=A(n,m)/m!=n!/m!(n-m)!与C(n,m)=C(n,n-m)。(n为下标,m为上标)。概率论是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。随机现象则是指在基本条件不变的情况下,每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。

c的计算法则

组合运算法则,在线性写法中被写作C(n,m)。组合数的计算公式为n元集合A中不重复地抽取m个元素作成的一个组合实质上是A的一个m元子集合。如果给集A编序成为一个序集,那么A中抽取m个元素的一个组合对应于数段到序集A的一个确定的严格保序映射。

一、排列组合计算方法如下:排列也可以表示成P

排列A(n,m)=n×(n-1)(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)

组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;

例如:

A(4,2)=4!/2!=43=12

C(4,2)=4!/(2!2!)=43/(21)=6

二、概率中的C和P区别:

1、表示不同

C表示组合方法,比如有3个人甲乙丙,抽出2个人去参加活动的方法有C(3,2)=3种,分别是甲乙、甲丙、乙丙,这个不具有顺序性,只有组合的方法。

P表示排列方法,表示一些物体按顺序排列起来,总共的方法是多少。

2、性质不同

公式P是指排列,从N个元素取R个进行排列(即排序)。

公式C是指组合,从N个元素取R个,不进行排列(即不排序)。

扩展资料

在概率论发展的早期,人们就注意到古典概型仅考虑试验结果只有有限个的情况是不够的,还必须考虑试验结果是无限个的情况。为此可把无限个试验结果用欧式空间的某一区域S表示,其试验结果具有所谓“均匀分布”的性质,关于“均匀分布”的精确定义类似于古典概型中“等可能”只一概念。

假设区域S以及其中任何可能出现的小区域A都是可以度量的,其度量的大小分别用μ(S)和μ(A)表示。如一维空间的长度,二维空间的面积,三维空间的体积等。并且假定这种度量具有如长度一样的各种性质,如度量的非负性、可加性等。

参考资料来源:百度百科-概率


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/13163493.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-14
下一篇 2023-06-14

发表评论

登录后才能评论

评论列表(0条)

保存