排列数
就是从n个不同元素中,任取m(m≤n)个元素(被取出的元素各不相同),按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
组合数
是指从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做n个不同元素中取出m个元素的组合数。用符号c(m,n)
表示。
例:从26个字母中选5个
排列:A(26,5)表示的是从26个字母中选5个排成一列;即ABCDE与ACBDE与ADBCE等这些是不一样的。
组合:C(26,5)表示的是从26个字母中选5个没有顺序;即ABCDE与ACBDE与ADBCE等这些是一样的。
2、计算
(1)
排列数公式
排列用符号A(n,m)表示,m≦n。
计算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!
此外规定0!=1,n!表示n(n-1)(n-2)…1
例如:6!=6x5x
4x3
x2x
1=720,4!=4x3x2x1=24。
(2)
组合数公式
组合用符号C(n,m)表示,m≦n。
公式是:C(n,m)=A(n,m)/m! 或 C(n,m)=C(n,n-m)。
例如:C(5,2)=A(5,2)/[2!x(5-2)!]=(1x2x3x4x5)/[2x(1x2x3)]=10。
扩展资料:
排列有两种定义,但计算方法只有一种,凡是符合这两种定义的都用这种方法计算;定义的前提条件是m≦n,m与n均为
自然数
。
(1)从n个不同元素中,任取m个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
(2)从n个不同元素中,取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。
排列组合
是
组合学
最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。
排列组合与古典概率论关系密切。
参考资料:
百度百科
词条--组合数公式公式P是指排列,从N个元素取R个进行排列(即排序)。 (P是旧用法,现在教材上多用A,Arrangement)
公式C是指组合,从N个元素取R个,不进行排列(即不排序)。 Am,n=m(m-1)(m-2)……(m-n+1)Cm,n=Am,n/n!=m(m-1)(m-2)……(m-n+1)/[n(n-1)……321]欢迎采纳,记得评价哦!C-Combination 组合
P-Permutation排列
公式P是指排列,从N个元素取R个进行排列(即排序)。
公式C是指组合,从N个元素取R个,不进行排列(即不排序)。
具体的用法,版面不太好设计,你看一下百科罢!
>C表示组合方法,比如有3个人甲乙丙,抽出2个人去参加活动的方法有C(3,2)=3种,分别是甲乙、甲丙、乙丙,这个不具有顺序性,只有组合的方法P(我当时学的时候是A)表示排列方法,表示一些物体按顺序排列起来,总共的方法
古典概率中,C是组合数公式的符号,古典概率中计算基本事件总数时,有时事件可以抽象成从n个元素中随机抽取m个元素出来,此时可用排列数公式计算基本事件数。
古典概率通常又叫事前概率,是指当随机事件中各种可能发生的结果及其出现的次数都可以由演绎或外推法得知,而无需经过任何统计试验即可计算各种可能发生结果的概率。
概率依其计算方法不同,可分为古典概率、试验概率和主观概率。
人们最早研究概率是从掷硬币、掷骰子和摸球等游戏和赌博中开始的。这类游戏有两个共同特点:一是试验的样本空间(某一试验全部可能结果的各元素组成的集合)有限,如掷硬币有正反两种结果,掷骰子有6种结果等。
二是试验中每个结果出现的可能性相同,如硬币和骰子是均匀的前提下,掷硬币出现正反的可能性各为1/2,掷骰子出出各种点数的可能性各为1/6,具有这两个特点的随机试验称为古典概型或等可能概型。计算古典概型概率的方法称为概率的古典定义或古典概率。
1、概率论,一个C上下个一个数字的算法:Cmn=m!/[n!(m-n)!]m在下,n在上n!代表n的阶乘=123……n。2、组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号C(n,m)表示。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)