逐次应用一阶导数的求导规则就可得到高阶导数相应的运算规则。
概念上讲,高阶导数计算就是连续进行一阶导数的计算。因此只需根据一阶导数计算规则逐阶求导就可以了,但从实际计算角度看,却存在两个方面的问题:
1、一是对抽象函数高阶导数计算,随着求导次数的增加,中间变量的出现次数会增多,需注意识别和区分各阶求导过程中的中间变量。
2、二是逐阶求导对求导次数不高时是可行的,当求导次数较高或求任意阶导数时,逐阶求导实际是行不通的,此时需研究专门的方法。
任意阶导数的计算:
对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。
所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。
1、先求出一阶、二阶、三阶导数2、再从这几个导数中找出规律
3、得出要求的N阶导数的表达式
4、如求y=sinx的N阶导数
y`=conx=sin(x+π/2)
y``=-sinx=sin(x+2π/2)
y```=-conx=sin(x+3π/2)
于是总结出
yn'=sin(x+nπ/2)方法1,依据已知的理论结论,就看学过哪些啦
方法2,对于已经给出的函数,一阶一阶地求导数,从中找出其n阶导数的规律(关于n的),再用数学归纳法证明这一规律(关于n)成立,则说明该函数具有任意阶导数
微分方程中有多个变量,其中一个是未知函数。方程中包含的未知函数的导数的最高阶数,称为方程的阶。
如xy''+x^3(y')^5-sin(y)=0,其中y是未知函数,其出现在方程中的最高阶导数为y'',是二阶导数,方程的阶为二阶方程。
:
微分方程的解
微分方程的解通常是一个函数表达式y=f(x),(含一个或多个待定常数,由初始条件确定)。
例如:
,其解为:
,其中C是待定常数;
如果知道
,则可推出C=1,而可知 y=-\cos x+1,
一阶线性常微分方程
对于一阶线性常微分方程,常用的方法是常数变易法:
对于方程:y'+p(x)y+q(x)=0,可知其通解:
,然后将这个通解代回到原式中,即可求出C(x)的值。
二阶常系数齐次常微分方程
对于二阶常系数齐次常微分方程,常用方法是求出其特征方程的解
对于方程:
可知其通解:
其特征方程:
根据其特征方程,判断根的分布情况,然后得到方程的通解
一般的通解形式为:
若
,则有
若
,则有
在共轭复数根的情况下:
。
微分方程 百度百科
一阶导数可以用来描述原函数的增减性。
二阶导数可以用来判断函数在一段区间上的凹凸性,f''(x)>0,则是凹的,f''(x)<0则是凸的。
三阶导数一般不用,可以用来找函数的拐点,拐点的意思是如果曲线f(x)在经过点(x0,f(x0))时,曲线的凹凸性改变了,那么就称这个点为曲线的拐点。
若f(x)在x0的某邻域内具有三阶连续导数,f''(x0)=0,f'''(x0)≠0,那么(x0,f(x0))是f(x)的一个拐点。
扩展资料
二阶导师的性质:
(1)如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:
f(x)+f(y)≥2f[(x+y)/2],如果总有f''(x)<0成立,那么上式的不等号反向。
几何的直观解释:如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。
(2)判断函数极大值以及极小值。
结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)