如何学好高等数学?

如何学好高等数学?,第1张

新生刚刚从中学跨入大学的校门,不了解《高等数学》课程的特点和重要性,难于掌握一套科学的学习方法,以及对高等数学课程学习的重要性没有足够的认识,而导致某些同学没能学好这门课。高等数学是理工科大一新生必修的一门理论基础课程。它对于各专业后继课程的学习,以及大学毕业后这类工程技术人员的工作状况,高等数学课程都起着奠基的作用。如在校继续学习中只有掌握好高等数学的知识后,才能比较顺利地学习其他专业课程。如物理,控制科学、计算机科学、工程力学、电工电子学、通信工程、信息科学等等,也才能学好自己的专业课程。又如当毕业走向工作岗位后,要很好地解决工程技术中的问题,势必要经常应用到数学知识。因为在科学技术不断发展的今天,数学方法已广泛渗透到科学技术的各个领域之中。因此,工科类大学生在学习上一个很明确的任务是要学好高等数学这门课程,为以后的学习和工作打下良好的基础。那么,大一新生怎样才能学好高等数学呢?以下几点看法,仅供同学们参考。一、摒弃中学的学习方法,尽快适应环境一个高中生升入大学学习后,不仅要在环境上、心理上适应新的学习生活,同时学习方法的改变也是一个不容忽视的方面。从中学升入大学学习后,在学习方法上将会遇到一个比较大的转折。首先是对大学的教学方式和方法会感到很不适应。这在高等数学课程的教学中反应特别明显,因为它是一门对大一新生首当其冲的理论性较强的基础理论课程。而学生正是习惯于模仿性和单一性的学习方法。这是从小学到中学的教育中长期养成的,一时还难以改变。中学的教学方式和方法与大学有质的差别,中学的学习学生是在教师的直接指导下进行模仿和单一性的学习,大学则是在教师的指导下进行创造性的学习。例如,中学的数学课教学完全是按教材的内容进行的,老师在课堂上讲,学生听,不要求学生记笔记。教师授课慢,讲得细,计算方法举例多,课后只要求学生能模仿课堂上所讲的内容解决课后习题就可以了,没有必要去钻研教材和其他参考书(为了高考增强学生的解题能力而选择一些参考书,仅是为了训练学生的解题能力的需要)。而大学高等数学课程的学习,教材仅是作为一种主要的参考书,要求学生以课堂上老师所讲的重点和难点为线索,课后去钻研教材和阅读大量的同类参考书,然后去完成课后习题。就这样反复地进行创造性学习。这是一种艰苦的脑力劳动,需要学生能反复地、自觉地进行学习。还要在松散的环境中能约束自己,大学生活是人生的一大转折点。大学时期注重于培养同学们的独立生活、独立思考、独立分析问题和解决问题的能力,而不像中学那样有一个依赖的环境。高等数学与高中数学相比有很大的不同,内容上主要是引进了一些全新的数学思想,特别是无限分割逐步逼近,极限等;从形式上讲,学习方式也很不一样,特别是一般都是大班授课,进度快,老师很难个别辅导,故对自学能力的要求很高。中学时期主要是老师领着学,学生只需要跟着老师的指挥棒走就可以了,而在大学时主要靠自学,教师只起一个引导的作用。新同学应尽快适应大学生活,形成一个良好的开端,这对四年的大学生涯是有益的。二.注意中学数学和《高等数学》的区别与联系中学数学课程的中心是从具体数学到概念化数学的转变。中学数学课程的宗旨是为大学微积分作准备。学习数学总要经历由具体到抽象、由特殊到一般的渐进过程。由数引导到符号,即变量的名称;由符号间的关系引导到函数,即符号所代表的对象之间的关系。高等数学首先要做的是帮助学生发展函数概念——变量间关系的表述方式。这就把同学们的理解力从常量推进到变量、从描述推进到证明、从具体情形推进到一般方程,开始领会到数学符号的威力。但《高等数学》的主要内容是微积分,它继承了中学的训练,它们之间有千丝万缕的联系。三.尽快适应《高等数学》课程的教学特点为了适应21世纪高等数学课程的教学改革,高等数学课程的教学也发生了很大的变化,在传统的教学手段的基础上,采用了更加具体化、形象化的现代教育技术,这也是一般中学所没有的,因此,同学们在进入大学以后,不仅要注意高等数学课程的内容与中学数学的区别与联系,还要尽快适应高等数学课程的新的教学特点。认真上好第一节高等数学课,严格按照任课老师的要求去做。若能坚持做到,课前预习,课上听讲,课后复习,认真完成作业,课后对所学的知识进行归纳总结,加深对所学内容的理解,从而也就掌握了所学的知识,就不难学好高等数学这门课。有些同学就是没有把握好自己,一看高等数学一开始的内容和中学所学内容极其相似,就掉以轻心,认为自己看看就会了,要么不听课,要么不完成作业,结果导致后面的章节听不懂,跟不上,甚至有的同学就一直跟不上,学期末成绩不理想,甚至不及格。四.掌握正确的学习方法由于《高等数学》自身的特点,不可能老师一教,学生就全部领会掌握。一些内容如函数的连续与间断,积分的换元法、分步积分法等一时很难掌握,这需要每个同学反复琢磨,反复思考,反复训练,锲而不舍。通过正反例子比较,从中悟出一些道理,才能从不懂到一知半解到基本掌握。这里仅结合一般学习方法,谈一点学习《高等数学》的方法,供参考。
第一,要勤学、善思、多练。所谓学,包括学和问两方面,即向教师,向同学,向自己学和问。惟有在“学中问”和“问中学”,才能消化数学的概念、理论、方法;所谓思,就是将所学内容,经过思考加工去粗取精,抓本质和精华。华罗庚“抓住要点”使“书本变薄”的这种勤于思考、善于思考、从厚到薄的学习数学的方法,值得我们借鉴;所谓习,就《高等数学》而言,就是做练习,这是数学自身的特点。练习一般分为两类,一是基础训练练习,经常附在每章每节之后,这类问题相对来说比较简单,无大难度,但很重要,是打基础部分。二是提高训练练习,知识面广些,不局限于本章本节,在解决的方法上要用到多种数学工具。数学的练习是消化巩固知识极重要的一个环节,舍此达不到目的。
第二,狠抓基础,循序渐进。任何学科,基础内容常常是最重要的部分,它关系到学习的成败与否。《高等数学》本身就是数学和其他学科的基础,而《高等数学》又有一些重要的基础内容,它关系到整个知识结构的全局。以微积分部分为例,极限贯穿着整个微积分,函数的连续性及性质贯穿着后面一系列定理结论,初等函数求导法及积分法关系到今后各个学科。因此,一开始就要下狠功夫,牢牢掌握这些基础内容。在学习《高等数学》时要一步一个脚印,扎扎实实地学和练。第三,归类小结,从厚到薄。记忆总的原则是抓纲,在用中记。归类小结是一个重要方法。《高等数学》归类方法可按内容和方法两部分小结,以代表性问题为例辅以说明。在归类小节时,要特别注意有基础内容派生出来的一些结论,即所谓一些中间结果,这些结果常常在一些典型例题和习题上出现,如果你能多掌握一些中间结果,则解决一般问题和综合训练题就会感到轻松。
第四,精读一本参考书。实践证明,在教师指导下,抓准一本参考书,精读到底,如果你能熟读了一本有代表性的参考书,再看其它参考书就会迎刃而解了。
第五,注意学习效率。数学的方法和理论的掌握,常常需要做到熟能生巧、触类旁通。人不可能通过一次学习就掌握所学的知识,需要有几个反复。所谓“学而时习之”、“温故而知新”都是指学习要经过反复多次。《高等数学》的记忆,必须建立在理解和熟练做题的基础上,死记硬背无济于事。
第六,掌握学习规律1.书:课本+习题集(必备),因为学好数学绝对离不开多做题,建议习题集最好有本跟考研有关的,这样也有利于你做好将来的考研准备。
2.笔记:尽量有,我说的笔记不是指原封不动的抄板书,那样没意思,而且不必非单独用个小本,可记在书上。关键是在笔记上一定要有自己对每一章知识的总结,类似于一个提纲,(有时老师或参考书上有,可以参考),最好还有各种题型+方法+易错点。
3.上课:建议最好预习后听,听不懂不要紧,很多大学的课程都是靠课下结合老师的笔记自己重新看。但是记住:高数千万别搞考前突击,绝对行不通,所以平时你就要跟上,步步尽量别断层。
4.学好高数=基本概念透+基本定理牢+基本网络有+基本常识记+基本题型熟。数学就是一个概念+定理体系(还有推理),对概念的理解至关重要,比如说极限、导数等,你既要有形象的对它们的理解,也要熟记它们的数学描述,不用硬背,可以自己对着书举例子,画个图看看(形象理解其实很重要),然后多做题,做题中体会。建议你用一只彩笔专门把所有的概念标出来,这样看书时一目了然(定理用方框框起来)。基本网络就是上面说的笔记上的总结的知识提纲,也要重视。基本常识就是高中时老师常说的“准定理”,就是书上没有,在习题中我们总结的可以当定理或推论用的东西,还有一些自己小小的经验。这些东西不正式但很有用的,比如各种极限的求法。这些都做到了,高等数学应该学得不会差了,至少应付考试没问题。如果你想提高些,可以做些考研的数学题,体会一下,其实也不过如此,并不象你想象的那么难。还可以看些关于高数应用的书,其实数学本来就是从应用中来的,你会知道高等数学真的很有用。总之,大学学习是人生中最后一个系统学习的过程。它不仅要传授给我们一个比较完整的专业知识,还要培养学生走向社会的工作能力和社会知识。就高等数学课程而言,这就要培养我们学生的观察判断能力,逻辑思维能力,自学能力以及动手解题能力,而这几种能力结合起来,就可以构成独立分析问题的能力和解决问题的能力。在此,期望大家高度重视高等数学的学习,探索出一套对自己行之有效的学习方法。

零基础数学应该怎么学高数对于零基础的人来说学习普通数学就已经很困难了,更何况是高数呢那是不是就没有学习方法了呢别担心,以下是我分享给大家的零基础数学学高数的方法,希望可以帮到你!
零基础数学学高数的方法
1、数学基础要打牢

MBA数学考试不像高考更不像奥数,要考察某一知识点的延伸,通过研究近几年的真题可以发现,试卷中的大多数题目都是对大纲知识点的直接考察。所以大家一定要把基础打牢,不要盲目追求深度,力争把基础分都拿到。如果连基础分都拿不到,难度分再没搞利索,那就得不偿失了。

那么如何打好数学基础呢首先要通读教材,整理出大纲要求的知识点,形成知识网络,便于记忆;其次是深究各个知识点,对定义及用法着重分析。最后是对知识点进行融会贯通,通过做习题来巩固。

2、不同阶段,习题量应有所调整

一提起数学,很多人就会想起题海战术,题是需要做,但什么时候做,做多做少都是有讲究的。刚开始复习,基础又不是很好,应该以理论理解为主,先把相关概念弄清楚,可以用少量的习题来辅助理解。习题的选择也要注意,选择一些有针对性的习题来做,真正做到一个题消化一个知识点。

切忌一开始就以做题为主,不但会经常做错,打击信心,还得不到效果,浪费大量的时间。基础打牢之后习题就要多做了。通过做大量的习题来消化和巩固知识点,了解试题考查的维度,熟悉出题规律,另外,还要注意锻炼答题速度。在保证准确性的基础上,还要提高速度,确实不是一件容易的事,必须通过大量的练习来实现。

3、合理规划复习时间并严格执行有的小伙伴们特别随便没有一个严格的学习计划,想学了就学点不想学就就去干别的甚至学着后面的望着前面的还有的考生复习之前有一个计划,但一到真正实施就管不住自己了,总是不能保质保量的完成任务。当然,我们也不建议完全脱产学习,但不对自己残忍就是对竞争对手的仁慈,要用对待阶级敌人的态度对待学习任务。

4、心态(老话长谈,但一定要说)

现在大家工作生活上的压力都比较大,每个人在MBA复习过程中都会遇到一些困难,情绪上也会出现波动。适当聊聊天喝喝茶散散步是百试不爽的,实在没人聊可以找加油菌,总之要把自己的负面情绪发泄出来。
零基础数学学高数的技巧
一、背数学

我曾经有一位学生数学成绩一塌糊涂,甚至都想放弃数学,去参加不要求数学成绩的院校招生。直至一天他想到“背数学”的学习方法,他写到:

这个技巧是:不懂的问题,直接看解答,先背起来再说。如此一来,一题一般只要5分钟便背下来,从量来看,可以追赶得上成绩好的同学。

各位猜猜看看,从开始背数学后,她的成绩变好了吗结果是,她的成绩进步神速,高中三年级时,数学模拟考试成绩还进入全国排名,并应届考上东京大学医学院。比她小一岁的弟弟采用了此方法,也成为该校创校以来第二位应届考入东京大学文学院的学生。

无独有偶,1995年北京市文科状元、北京大学段楠同学,也有类似的经历。她在北京四中读书时,高二第一学期期末考试只列上第30名,而且数学还没及格。那么,她是如何把数学成绩提上来的呢她说:

学习数学有一个自己的小窍门,不一定对每个人有用,说出来仅供参考:如果能学好数学是背例题背出来。不采用题海战术,但是从每种类型的题中找出一两道典型题“背”过一两次,理解之后,再看到难题就会拿着例题往里套了。

二、教材试卷化,试卷教材化

之前有位学生成绩一直很稳定,但拔不了尖。为了她很苦恼,不知道怎么做才能打破这一局面。直至有一天她忽然想到把试卷和教材来个角色互换,具体做法:

试卷和教材“角色互换”步骤如下:

第一步,把试卷依照教材的顺序清理好,并编上序号。因为试卷基本都是按教材走的,清理起来并不费劲。

第二步,在试卷的开始处写上一段“导语”。主要内容有:一是此试卷考什么,二是与考试有关的知识要点。

第三步,在试卷结尾处,写上一段“小结”,总结自己考试情况,写出自己在知识上的缺陷。

她说,将这些试卷装订起来,反复阅读,实在比看教材过瘾。

再说教材与试卷的“角色互换”。这位同学的做法如下:

第一步,认真阅读教材。

第二步,阅读一段,就用若干问题以考题形式总结出来。

第三步,将问题和参考答案写在一个本上,至此,教材试卷化工作即已完成。

她说,教材上每一节或每一章往往也有思考题,但教材试卷化时,要比教材更细,可以一小段就出一道题。

三、回过来做课本上的题

老师有个建议:索性先回过头来,老老实实地、认认真真地把课本上的题全做一遍。这么做的原因有:

第一:课本上的习题,是编教材的老师费尽心思、反复考虑才挑选出来,是最具代表性的题,是最具代表性的题,是最好的题,值得去做。

第二:一般来讲,课本上的习题,尤其注意与概念、公式、定律的联系,而数学成绩不太稳定的同学的一大通病,就是基础不劳,概念、公式、定律等掌握得不是很好,为此也值得去做课本上的题。

第三:课本上的习题,有的老师讲过,有的教参书上有比较详细的讲解,比较容易做对,从而增强自己的信心。

以优异成绩考入中山大学的2001级本硕连读班的的洪伟雄同学也有同感。他说:“第一,做题应先做课本上的题。第二,做题还有个“适度”问题。”
零基础数学学高数的建议
第一,要具备不卑不亢的心态

数学并非难,只是它的表述体系和思维要求,对于多数中国学生比较陌生。要把它当作全新的东西来认识,就跟学习一门新语言一样。以前自己学的东西,包括高中知识和AP数学等,记住概念即可,思维推导不要沿用。然后严格按照老师讲的思维方式,不厌其烦的推导和证明,慢慢一回生二回熟。几年前华人数学天才陶哲轩给UCLA本科生讲Honor Analysis(荣誉数学分析)的时候,上来进度非常慢,前一个月都在证明皮亚诺公理、集合论和基本的映射理论,但后来可以越学越快,而且学生越学越Hi。拳不离手,曲不离口,学语言要勤动口和动笔,学数学也要没事常动脑。

就算文科生一样可以学好数学:20世纪俄罗斯数学学派掌门人、莫斯科国立大学数学系主任柯莫高(Kolmogorov,又译柯尔莫格洛夫)大一是读历史的。美国人魏爱华(Edward Witten)更奇葩,本科四年读的都是历史和语言学,博士申请UWM的经济学博士,读了半年退学,自修数学和物理,23岁考进Princeton,硕转博再同时搞数学和物理。16年后,他站在菲尔兹奖的领奖台上。

我说过了基础数学其实是哲学,而哲学算文科还是理科都有道理。另一方面,国内就算奥赛摘金夺银,到美国也要扎扎实实的学。因为奥赛国际金牌在欧美的精英面前多数是渣:俄罗斯盖芳德(Gelfand)15岁读完代数几何教父高探蝶(Grothendieck)的名著EGA(代数几何原理),这套书让北大博士去读都够呛。我们石溪的米糯教授本科大一在《数学年鉴》上发论文,这是数学界最高学术期刊,每年中国大陆都很难有一篇文章发表。

这里特别要说一下美国数学教学的二段教学法:不同于俄罗斯和中国上来就是带证明的数学分析和高等代数,美国的教学更为亲民:上来先是微积分和不带证明的线性代数,内容比较简单,作业和考试很多中国学生可以依靠高中基础秒杀之。但不少人练习不够,很多知识没搞透,方法技巧也不够熟练。然后到了第二段,数分和高代一开,很多人欲哭无泪。这就要求第一阶段,哪怕觉得这些题再傻,一本书一道不落地做完是很有必要的。 然后第二段就要细读书,多问老师。在美国基础数学能学好的中国人,要么是自己天才,要么就把教授办公室的椅子坐穿。

第二,保证数学的学习时间

要是天才并且喜欢数学,那你自然会给数学大量时间。如果是为了将来胜任其他领域而学数学,要记住大一大二对于打好数学基础是最宝贵的。所以,建议每天先完成其他学科的作业,然后把大块时间分配给数学的看书做题细琢磨。

我目前主要是修各种数学课和一门应用数学的概率论,每天时间大体是这样分割的:睡觉6小时,吃饭包括饭后的休息2小时,健身和洗澡2小时,交通1小时,个人爱好1小时(抄抄四书五经,读读文艺的歌词,主要是墨明棋妙的还有林夕的),机动时间1小时,剩下11小时是听课和课下学习。周末多用两小时坐校车去买个菜,路上一直思考,也相当于最终学习10小时。

谁说数学天才每天悠哉游哉那么最年轻的菲尔兹奖得主,27岁得奖的赛赫(Jean-Pierre Serre)够天才了吧他自述道:习惯带着数学题入梦,醒来往往有思路。故我用最爱的《红楼梦》第一回作为他的雅号:“梦幻通灵”赛赫(与“造化阴阳”高探蝶,“迷津慈航”艾抵涯(Sir Michael Atiyah,英国皇家学会会长,敕封爵士)并列20世纪世界第一的数学家)。数学多好算好别说拿A,满分都是不够的。一本书读完,知识和方法不超纲的题目要难不住你(by“现代微分几何之父”陈省身)。一本书读完,同一领域下一阶段的书要能自通30%(by菲尔兹奖得主Curtis McMullen的导师Dennis Sullivan,石溪数学四大导师之苏立文)。校内传的什么每天学习八小时那是给别的学科的。每天八小时想学好数学做梦!

第三,学会科学的思维方法

(1)数学思维的三个方面

任何数学的定义、定理说透了也就三部分:

第一是它本身的文字和(或)符号、 公式内容;

第二是它在数学知识体系中的位置,与其他数学内容的逻辑关系,包括由什么可以推出来该定义或定理,它又可以(与其它定理一起)推出些什么;

第三是它所涉及的范畴有什么具体实例(比如循环群就有旋转图形、整数加群和同余模加群等例子),这些例子又有何作用,能否在数学中或数学外(典型的如几何和物理)取得应用。

这就分别是数学对象的本体论、方法论和目的论。柯莫高说:“的确学生对数学的适应性存在差异,这种适应性表现在:

1、算法能力,也就是对复杂式子作高明的变形,以解决标准方法解决不了的问题的能力。

2、几何直观的能力,对于抽象的东西能把它在头脑里像图画一样表达出来,并进行思考的能力。

3、一步一步进行逻辑推理的能力。

这些对应的就是掌握数学概念的三方面需要什么能力。提高算法能力最好多做题,几何直观除了做题还要平时多留意,多联系生活实际;逻辑推理这个往往是中国学生的弱项,毕竟我们母语的方块字二维画面性远远超过西方拼音文字,而一维线形(逻辑链的内在属性)却不足。汉字个个如画,横竖左右写均可,而西方拼音文字就得一条路从左往右,上下写都够呛。故逻辑推理要特别练习。练习逻辑推理的方法关键在定理的证明,下面会详述。

(2)如何课前预习

一开始微积分可以多做一点,而数分和高代等带证明的预习下一节课内容即可。先回顾上堂课所学知识,再看新章节内容:先略读本章节,看清有几个定义(Definition),几个定理(Theorem)和引理(Lemma),有哪些例子(Example)和注释(Remark)。如果把数学比作一门语言,定义就是名词,定理和引理是句子,而例子和注释相当于古文经典中的注和疏。定义一定要自己品味,比较长的拆开句子成分慢慢看,不行就抄。日本第一个菲尔兹奖小平邦彦大学时抄过整本Van de Warden的代数,咱们抄书不丢人。 定义要么是全新的,这个不急着理解,往后看看;要么是基于以前内容的,这个不妨回顾一下相关内容再继续看。

遇到定理就要注意,课本的证明不要先看,自己理解定理内容后,把定理当作习题徒手证一遍,写下来,再与课本原文比较,查找二者的不同:自己的证明是不是漏某条件或者把某需要说明的当做显然了(初学者常犯错误),是不是有多余的语句,是不是有地方用错了。凡是不同处,都要重点思考,这样进步就快了。如果实在想不起来,就看看书本怎么证的。对于自己的不足,要整理到上述公式、逻辑或几何三个大类中,并提醒自己注意(如国内分析教材从罗尔定理证明拉格朗日中值定理,很多人不会把一般的函数构造成符合罗尔定理条件的函数,这个就牵涉到公式变形能力和逻辑能力)。

引理也是这么证。别小看引理,朗兰兹猜想中的基本引理之一,吴宝珠证出来就是一个菲尔兹奖。至于例子,也是不要先看,自己看了定理,自己想至少两个例子,一个是典型的,一个是退化的极限情况(by Halmos,《我要做数学家》和《希尔伯特空间习题集》的作者,芝加哥大学鼎盛时期和陈省身等共事的数学家)。例如高中解析几何的双曲线,分母的a^2, b^2当然大于零,可以找出来一个例子。如果其中一项等于零,就退化成两条直线,这就是退化的极限情况。不要小看退化,这正是跟以前知识的联系。自己想了例子,其实潜意识中,注释的内容已经过了一遍。然后不必太早做习题,再回顾一下整个思维过程有没有需要看课本提示的地方,有没有自己能看懂但是跟以往惯性思维相悖的地方,有没有突然顿悟的地方。这都要记下来,上课等老师讲到这里时要格外留心。

(3)听课

美国的数学教授基本还是写黑板,而且不会太快。上课公式一写几黑板的那是应用数学教授,噼噼啪啪打幻灯的在石溪一定不是数学或物理教授。 所以,有时间记笔记。但不必全记住,把预习的成果调动起来,老师讲的时候跟自己脑中的备份随时印证并修正。就一个建议,教授不停嘴,学生不动笔。真正听好了,上课一字不写又何妨课下完全可以轻松补全并注上自己的心得见解。

(4)课下

先整理笔记,一定有自己的见解,全抄老师的对于学应数是有用的,对于学数学则是浪费时间。数学界的师生关系往往很融洽,但思维上绝对是批判继承和启发继承,学我者昌,似我者亡。然后是定义再品味一下,定理和引理自己再证一遍,比较老师的证明、课本的证明和自己当初的证明,这次不仅要能说出哪个好,还要能说出为什么好。

然后是做题了。除了开始的微积分要刷书,带证明的课,课本做好作业题就够了,因为老师选的可能不是经典教材(经典的往往比较难,很多美国学生受不了)。但每个题要做精,做完一题回顾自己的思路历程,并对其中的公式变形、逻辑推理和几何直观进行归类。实在做不出来,画个记号,改天再看,两天都做不出来才可以看解答。对于解答中自己想不到的,要特别标注,常常回顾。然后就是选一本这一门课比较经典的书,按照上文预习和做题的路子走一遍。经典教材的知识点和思路要自己总结,每过一两章节,找一张大的纸画下来本章定理的逻辑体系图。经典教材的题目最好都做,做不出来,Office Hour坐穿椅子去。

(5)心理状态

很多人开始觉得数学难,然后生怕基础打得不牢,一个定理看半天,看似很认真很投入,其实就算理解了思维也很僵化,而且容易跟不上进度。这就像打羽毛球和练书法,你心里紧张,手抓得太紧,反而发不出力来,写的字也不好看。掌心要虚着,身体要保持随时可以发力的d簧状,击球时蹬地转体推肩压臂一套动作一气呵成,手掌瞬间抓紧最后一次加速,这才能打出林丹那样硬砸开李宗伟铁板防御的扣杀。书法所谓挥洒,也是如此。要保持轻微的紧张和激动,有点小期待,随时能调动已有知识,并可以多角度观察新知识,思维能发散也能迅速收回并集中攻关。

这种感觉一旦找到,妙不可言。不过重难点也要适当文火慢炖:如果教材中有令自己感到太难的思考,头一天理解了要标记,第二天要试着不看书回忆。曾任Princeton和University of Wisconsin Madison教授,现坐镇石溪的微分几何大家陈秀雄先生在《初遇尤金·卡拉比》中写道,当年导师卡拉比告诉过他:如果你不能在脑海中重复整个论证过程,那么它就没有成为你的一部分。



1 学习数学最快的方法

2 大学数学为什么这么难

3 正确学习数学的方法

4 学习数学的有效方法有哪些

5 基础差应该怎么学高等数学

大学高数,有的同学听了就说脑袋疼。其实高数并没有那么可怕。 首先我们应该克服自己的心理障碍。不要听学长们说高数怎么难怎么不好学。特别是我们文科生,和理科生相比我们的确没有很好的基础。其实这都不是问题,对于我们来说都是同样地起点。 其实高数并非想象的那么不可高攀,最关键的是要注意学习方法,而高数一和高数二的学习又有所不同,下面具体介绍我的对学习高数的技巧。有的方法适用于自学的有的适用于听课的,请同学们根据自己的情况 高数一,首先要有扎实的基本功因为高数一主要是微积分,它实际是有关函数的各种运算。所以首先就是熟悉各种函数的性质、运算等,这些内容都是高中课本上的内容,在高数一书本上只是简单介绍而已。我有两种方法学习高数,一种就是花大量的时间去实行题海战术,这种是上高中时候的方法,到大学我试过并不是很适合我们大学生。二就是熟练掌握知识点。并不是死记硬背,而是能很好的领会其中意思。其实题海战术目的就是熟练地掌握知识点得过程。与其花那么长得时间去做题,还不如掌握知识点。有些知识点很抽象,书上一定有相关的例题,结合例题更有助于理解和记忆。有关指数函数、幂函数、对数函数、三角函数等一定要很熟练,否则要想学好高数可能就需要很多时间了。对于大学考试来说,出的题不是很难,都是一些基本的知识,只要你掌握了每个知识点,那么你就迈出乐学好高数的第一步。在有较扎实的基础后,现在可以开始学习高数了。因为高数一各章是相互关联层层推进的,
每一章都是后一章的基础,所以学习时一定要按部就班,只有将这一章真正搞懂了才可进入下一章学习,切忌为求快而去速学,欲速则不达嘛,特别是当前面没学好硬去学后面的,会将不懂的问题越集越多,此时尤其自学者的心态就会越来越烦躁,并且不知从何处下手去改善,所见的题目、知识全都不懂,这时很大部分朋友可能就会放弃做逃兵。所以一定要一章一章去学。 看完每章的知识点后一定要找相关的课后题做。复印社一般都有往年的考试题,做了部分题后,就拿一套以往考试题看看考题中本章有没有题,可以看看关于本章出题的方式。高数一学习是一个长期的过程,所以往后学的过程中,一定要制定计划定期拿一些前面章节的题来做。很多考生在学习过程中,往往学到后面的就把前面内容忘记了。边学边忘肯定是不行的,也会影响到后面的学习。 很多学高数挂科的同学一定不要像我说的这样例如:去报重修,但读到一小半时可能由于种种原因就读不下去了,高数也只学到积分那章就放弃了,心里可能想,哎高数那么难,留到明年再考吧。借口一有,马上放弃这次考试了。那等明年,这种情况可能又会重复一次,从而周而复始,于是所有科目都过了,只剩下高数这个硬骨头,心理自然就生出高数好难的念头。这种情况在我以前上课时经常发生,刚开课时,教室挤满人,但课程还没上到一半人就走掉一半了,最后能坚持下来的人寥寥无几,而最后能通过考试的恰好就是这些坚持下来的学生。所以最好只重修高数一门,全心投入去学习它,当你中途感到吃力坚持不下时,不要找任何借口逃脱,而要想想问题出在哪里,为什么学不下去?找到
问题所在然后克服它,那最后一定能成功! 二)高数二的学习与高数一相比有很大的差异。首先说一说它们之间的异同,第一点,高数二不需要太多的基础知识,只是概率里有一点积分和导数的简单计算;第二点,高数一整个内容由微分扣积分这条线贯穿始终,而高数二内容连贯性不是很强;第三点,高数一学习要从根本上加强对基本概念和理论的理解,拓宽解题思路,加强例题典型题的分析和综合练习,并能对典型题举一反三,而高数二要加强基本概念的理解,并能掌握书本上的基本例题即可,不需举一反三,考试题目特别是概率的大题大多千篇一律,无非就是将书上例题数字改一改而已,所以不需做大量题,只需将书上题目“真正”会做即可,如果你能找到大量的题的话,你仔细看看,肯定是千篇一律的。 在高数一里有些方法已经向大家说了,这里就不对高数二进行详细分析乐。想学好高数并不是方法就能解决的。还需要我们自己的积极表现。高数相对来说是很枯燥的一门学科,有的同学感觉听着有点乱,心里就急,然后就不想听了,干脆趴着睡觉。就像我刚才说的似的硬着头皮都要听。上课老师讲得内容即使你没有能够吸收但是对于你课后自习会有很大帮助。书上哪些内容需要了解哪些内容需要掌握,这些都是你课后自习不能知道的。高数一般都是上午一二节,有时候大家都很困,影响听课状态。所以这就需要我们休息好。上高数前一天寝室同学合计一下早点睡,这样才能保证有个良好的精神状态。还有那句老话号记性不如烂笔头。记笔记也是学好高数一个很好的办法。第一,它包括老师上课所讲得内容。你复习看它相当于老师又讲一遍。第二,考试一般都
是在老师上课所讲的内容里,老师所写的练习题,都是考试题型。记住并且理解会对你有很大的帮助。第三,你记笔记的同时,你自然就会跟上老师的节奏,这也是防止上课溜号的一种方法。有的同学想买一些参考书来帮助理解,却不知道买什么类型的。参考书随便哪本都是一样,对于书上的知识总结都是很全,典型题以及一些技巧也很多。我们也完全可以不去买参考书,上课的笔记和书上的例题已经是精华了,我们要会利用资源,对于考试来说这些就足够了,但是对于考研来说一些辅助的书还是有必要的。 书山有路勤为径,学海无涯苦作舟。好学习方法只是我们通往成功的捷径,当然我们也要付出相当的努力。最重要的是我们要端正学习态度,真正的用心去学习它,我们虽然是文科也一样会学好高数。

上课认真听讲,课后多练习。
数学:
课本上讲的定理,你可以自己试着自己去推理。这样不但提高自己的证明能力,也加深对公式的理解。还有就是大量练习题目。基本上每课之后都要做课余练习的题目(不包括老师的作业)。数学成绩的提高,数学方法的掌握都和同学们良好的学习习惯分不开的,因此.良好的数学学习习惯包括:听讲、阅读、探究、作业.听讲:应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记.每堂课结束以后应深思一下进行归纳,做到一课一得.阅读:阅读时应仔细推敲,弄懂弄通每一个概念、定理和法则,对于例题应与同类参考书联系起来一同学习,博采众长,增长知识,发展思维.探究:要学会思考,在问题解决之后再探求一些新的方法,学会从不同角度去思考问题,甚至改变条件或结论去发现新问题,经过一段学习,应当将自己的思路整理一下,以形成自己的思维规律.作业:要先复习后作业,先思考再动笔,做会一类题领会一大片,作业要认真、书写要规范,只有这样脚踏实地,一步一个脚印,才能学好数学.总之,在学习数学的过程中,要认识到数学的重要性,充分发挥自己的主观能动性,从小的细节注意起,养成良好的数学学习习惯,进而培养思考问题、分析问题和解决问题的能力,最终把数学学好.
总之,是个积累的过程,你了解的越多,学习就越好,所以多记忆,选择自己的方法。祝学习成功!


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/13194612.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-18
下一篇 2023-06-18

发表评论

登录后才能评论

评论列表(0条)

保存