十进制
基数为10,逢10进1。在十进制中,一共使用10个不同的数字符号,这些符号处于不同位置时,其权值各不相同。
二进制
基数为2,逢2进1。在二进制中,使用0和1两种符号。
八进制
基数为8,逢8进1。八进制使用8种不同的符号,它们与二进制的转换关系为:
0:000 1:001 2:010 3:011 4:100 5:101 6:110 7:111
十六进制
基数为16,逢16进1。十六进制使用16种不同的符号,它们与二进制的转换关系为:
0:0000 1:0001 2:0010 3:0011 4:0100 5:0101 6:0110 7:0111
8:1000 9:1001 A:1010 B:1011 C:1100 D:1101 E:1110 F:1111
二进制数的运算
算术运算:加法
0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 10(向高位进1)
算术运算:减法
0 0 = 0 0 1 = 1(向高位借1) 1 0 = 1 1 - 1 = 0
逻辑运算:或(∨)
0 ∨ 0 = 0 0 ∨ 1 = 1 1 ∨ 0 = 1 1 ∨ 1 = 1
逻辑运算:与(∧)
0 ∧ 0 = 0 0 ∧ 1 = 0 1 ∧ 0 = 0 1 ∧ 1 = 1
逻辑运算:取反
0取反为1 1取反为0
注意:算术运算会发生进位、借位,逻辑运算则按位独立进行,不发生位与位之间的关系,其中,0表示逻辑假,1表示逻辑真。
2转换为十进制
二进制化为十进制
例:将二进制数10101转换成十进制数
(10101)2 = 1×22 + 0×21 + 1×20 + 0×2-1 + 1×2-2 = (525)10
八进制化为十进制
例:将八进制数126转换成十进制数
(126)8 = 1×81 + 2×80 + 6×8-1 = (1075)10
十六进制化为十进制
例:将十六进制数2AB6转换成十进制数:
(2AB6)16 = 2×162 + 10×161 + 11×160 + 6×16-1 = (683375)10
3转换为二进制
八进制化为二进制
规则:按照顺序,每1位八进制数改写成等值的3位二进制数,次序不变。
例: (1736)8 = (001 111 011 110)2 = (111101111)2
十六进制化为二进制
规则:每1位十六进制数改写成等值的4位二进制数,次序不变。
例: (3A8CD6)16 = (0011 1010 1000 11001101 0110)2 = (111010100011001101011)2
十进制整数化为二进制整数
规则:除二取余,直到商为零为止,倒排。
例:将十进制数86转化为二进制
2 | 86…… 0
2 | 43…… 1
2 | 21…… 1
2 | 10…… 0
2 | 5 …… 1
2 | 2 …… 0
2 | 1 …… 1
结果:(86)10 = (1010110)2
十进制小数化为二进制小数
规则:乘二取整,直到小数部分为零或给定的精度为止,顺排。
例:将十进制数0875转化为二进制数
0875
× 2
175
× 2
15
×2
10
结果:(0875)10 = (0111)2
4转换为八进制
二进制化为八进制
整数部份从最低有效位开始,以3位一组,最高有效位不足3位时以0补齐,每一组均可转换成一个八进制的值,转换完毕就是八进制的整数。
小数部份从最高有效位开始,以3位一组,最低有效位不足3位时以0补齐,每一组均可转换成一个八进制的值,转换完毕就是八进制的小数。
例:(1100111101111)2 = (11 001 111011 110)2 = (31736)8
十六进制化为八进制
先用1化4方法,将十六进制化为二进制;再用3并1方法,将二进制化为8制。
例: (1CA)16 = (000111001010)2 = (712)8
说明:小数点前的高位零和小数点后的低位零可以去除。
十进制化八进制
方法1:采用除8取余法。
例:将十进制数115转化为八进制数
8| 115…… 3
8| 14 …… 6
8| 1 …… 1
结果:(115)10 = (163)8
方法2:先采用十进制化二进制的方法,再将二进制数化为八进制数
例:(115)10 = (1110011)2 = (163)8
5转换为十六进制
二进制化为十六进制
整数部份从最低有效位开始,以4位为一组,最高有效位不足4位时以0补齐,每一组均可转换成一个十六进制的值,转换完毕就是十六进制的整数。
小数部份从最高有效位开始,以4位为一组,最低有效位不足4位时以0补齐,每一组均可转换成一个十六进制的值,转换完毕就是十六进制的小数。
例:(1100111101111)2 = (1100 1111 0111 1000)2 = (CF78)16
八进制化为十六进制
先将八进制化为二进制,再将二进制化为十六进制。
例:(712)8 = (111001010)2 = (1CA)16
十进制化为十六进制
方法1:采用除16取余法。
例:将十进制数115转化为八进制数
16| 115…… 3
16| 7 …… 7
结果:(115)10 = (73)16
方法2:先将十进制化为二进制,再将二进制化为十六进制。
例:(115)10 = (1110011)2 = (73)16
参考资料:
2进制,用两个阿拉伯数字:0、1;
8进制,用八个阿拉伯数字:0、1、2、3、4、5、6、7;
10进制,用十个阿拉伯数字:0到9;
16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这五个字母来分别表示10,11,12,13,14,15字母不区分大小写
以下简介各种进制之间的转换方法:
一、二进制转换十进制
例:二进制 “1101100”
1101100 ←二进制数
6543210 ←排位方法
例如二进制换算十进制的算法:
126 + 125 + 024 + 123 + 1 22 + 021 + 020
↑ ↑
说明:2代表进制,后面的数是次方(从右往左数,以0开始)
=64+32+0+8+4+0+0
=108
二、二进制换算八进制
例:二进制的“10110111011”
换八进制时,从右到左,三位一组,不够补0,即成了:
010 110 111 011
然后每组中的3个数分别对应4、2、1的状态,然后将为状态为1的相加,如:
010 = 2
110 = 4+2 = 6
111 = 4+2+1 = 7
011 = 2+1 = 3
结果为:2673
三、二进制转换十六进制
十六进制换二进制的方法也类似,只要每组4位,分别对应8、4、2、1就行了,如分解为:
0101 1011 1011
运算为:
0101 = 4+1 = 5
1011 = 8+2+1 = 11(由于10为A,所以11即B)
1011 = 8+2+1 = 11(由于10为A,所以11即B)
结果为:5BB
四、二进制数转换为十进制数
二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……
所以,设有一个二进制数:0110 0100,转换为10进制为:
计算: 0 20 + 0 21 + 1 22 + 1 23 + 0 24 + 1 25 + 1 26 + 0 27 = 100
五、八进制数转换为十进制数
八进制就是逢8进1
八进制数采用 0~7这八数来表达一个数
八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方……
所以,设有一个八进制数:1507,转换为十进制为:
计算: 7 80 + 0 81 + 5 82 + 1 83 = 839
结果是,八进制数 1507 转换成十进制数为 839
六、十六进制转换十进制
例:2AF5换算成10进制
直接计算就是: 5 160 + F 161 + A 162 + 2 163 = 10997
(别忘了,在上面的计算中,A表示10,而F表示15)、
现在可以看出,所有进制换算成10进制,关键在于各自的权值不同
假设有人问你,十进数 1234 为什么是 一千二百三十四你尽可以给他这么一个算式: 1234 = 1 103 + 2 102 + 3 101 + 4 100
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)