我们的服务器从单机发展到拥有多台机器的分布式系统,各个系统之前需要借助于网络进行通信,原有单机中相对可靠的方法调用以及进程间通信方式已经没有办法使用,同时网络环境也是不稳定的,造成了我们多个机器之间的数据同步问题,这就是典型的分布式事务问题。
在分布式事务中事务的参与者、支持事务的服务器、资源服务器以及事务管理器分别位于不同的分布式系统的不同节点之上。分布式事务就是要保证不同节点之间的数据一致性。
1、2PC(二阶段提交)方案 - 强一致性
2、3PC(三阶段提交)方案
3、TCC (Try-Confirm-Cancel)事务 - 最终一致性
4、Saga事务 - 最终一致性
5、本地消息表 - 最终一致性
6、MQ事务 - 最终一致性
消息的生产方,除了维护自己的业务逻辑之外,同时需要维护一个消息表。这个消息表里面记录的就是需要同步到别的服务的信息,当然这个消息表,每个消息都有一个状态值,来标识这个消息有没有被成功处理。
发送放的业务逻辑以及消息表中数据的插入将在一个事务中完成,这样避免了业务处理成功 + 事务消息发送失败,或业务处理失败 + 事务消息发送成功,这个问题。
举个栗子:
我们假定目前有两个服务,订单服务,购物车服务,用户在购物车中对几个商品进行合并下单,之后需要情况购物车中刚刚已经下单的商品信息。
1、消息的生产方也就是订单服务,完成了自己的逻辑(对商品进行下单 *** 作)然后把这个消息通过 mq 发送到需要进行数据同步的其他服务中,也就是我们栗子中的购物车服务。
2、其他服务(购物车服务)会监听这个队列;
1、如果收到这个消息,并且数据同步执行成功了,当然这也是一个本地事务,就通过 mq 回复消息的生产方(订单服务)消息已经处理了,然后生产方就能标识本次事务已经结束。如果是一个业务上的错误,就回复消息的生产方,需要进行数据回滚了。
2、很久没收到这个消息,这种情况是不会发生的,消息的发送方会有一个定时的任务,会定时重试发送消息表中还没有处理的消息;
3、消息的生产方(订单服务)如果收到消息回执;
1、成功的话就修改本次消息已经处理完,也就是本次分布式事务的同步已经完成;
2、如果消息的结果是执行失败,同时在本地回滚本次事务,标识消息已经处理完成;
3、如果消息丢失,也就是回执消息没有收到,这种情况也不太会发生,消息的发送方(订单服务)会有一个定时的任务,定时重试发送消息表中还没有处理的消息,下游的服务需要做幂等,可能会收到多次重复的消息,如果一个回复消息生产方中的某个回执信息丢失了,后面持续收到生产方的 mq 消息,然后再次回复消息的生产方回执信息,这样总能保证发送者能成功收到回执,消息的生产方在接收回执消息的时候也要做到幂等性。
这里有两个很重要的 *** 作:
1、服务器处理消息需要是幂等的,消息的生产方和接收方都需要做到幂等性;
2、发送放需要添加一个定时器来遍历重推未处理的消息,避免消息丢失,造成的事务执行断裂。
该方案的优缺点
优点:
1、在设计层面上实现了消息数据的可靠性,不依赖消息中间件,弱化了对 mq 特性的依赖。
2、简单,易于实现。
缺点:
主要是需要和业务数据绑定到一起,耦合性比较高,使用相同的数据库,会占用业务数据库的一些资源。
下面分析下几种消息队列对事务的支持
RocketMQ 中的事务,它解决的问题是,确保执行本地事务和发消息这两个 *** 作,要么都成功,要么都失败。并且,RocketMQ 增加了一个事务反查的机制,来尽量提高事务执行的成功率和数据一致性。
主要是两个方面,正常的事务提交和事务消息补偿
正常的事务提交
1、发送消息(half消息),这个 half 消息和普通消息的区别,在事务提交 之前,对于消费者来说,这个消息是不可见的。
2、MQ SERVER写入信息,并且返回响应的结果;
3、根据MQ SERVER响应的结果,决定是否执行本地事务,如果MQ SERVER写入信息成功执行本地事务,否则不执行;
如果MQ SERVER没有收到 Commit 或者 Rollback 的消息,这种情况就需要进行补偿流程了
补偿流程
1、MQ SERVER如果没有收到来自消息发送方的 Commit 或者 Rollback 消息,就会向消息发送端也就是我们的服务器发起一次查询,查询当前消息的状态;
2、消息发送方收到对应的查询请求,查询事务的状态,然后把状态重新推送给MQ SERVER,MQ SERVER就能之后后续的流程了。
相比于本地消息表来处理分布式事务,MQ 事务是把原本应该在本地消息表中处理的逻辑放到了 MQ 中来完成。
Kafka 中的事务解决问题,确保在一个事务中发送的多条信息,要么都成功,要么都失败。也就是保证对多个分区写入 *** 作的原子性。
通过配合 Kafka 的幂等机制来实现 Kafka 的 Exactly Once,满足了读取-处理-写入这种模式的应用程序。当然 Kafka 中的事务主要也是来处理这种模式的。
什么是读取-处理-写入模式呢?
栗如:在流计算中,用 Kafka 作为数据源,并且将计算结果保存到 Kafka 这种场景下,数据从 Kafka 的某个主题中消费,在计算集群中计算,再把计算结果保存在 Kafka 的其他主题中。这个过程中,要保证每条消息只被处理一次,这样才能保证最终结果的成功。Kafka 事务的原子性就保证了,读取和写入的原子性,两者要不一起成功,要不就一起失败回滚。
这里来分析下 Kafka 的事务是如何实现的
它的实现原理和 RocketMQ 的事务是差不多的,都是基于两阶段提交来实现的,在实现上可能更麻烦
先来介绍下事务协调者,为了解决分布式事务问题,Kafka 引入了事务协调者这个角色,负责在服务端协调整个事务。这个协调者并不是一个独立的进程,而是 Broker 进程的一部分,协调者和分区一样通过选举来保证自身的可用性。
Kafka 集群中也有一个特殊的用于记录事务日志的主题,里面记录的都是事务的日志。同时会有多个协调者的存在,每个协调者负责管理和使用事务日志中的几个分区。这样能够并行的执行事务,提高性能。
下面看下具体的流程
事务的提交
1、协调者设置事务的状态为PrepareCommit,写入到事务日志中;
2、协调者在每个分区中写入事务结束的标识,然后客户端就能把之前过滤的未提交的事务消息放行给消费端进行消费了;
事务的回滚
1、协调者设置事务的状态为PrepareAbort,写入到事务日志中;
2、协调者在每个分区中写入事务回滚的标识,然后之前未提交的事务消息就能被丢弃了;
这里引用一下消息队列高手课中的
RabbitMQ 中事务解决的问题是确保生产者的消息到达MQ SERVER,这和其他 MQ 事务还是有点差别的,这里也不展开讨论了。
先来分析下一条消息在 MQ 中流转所经历的阶段。
生产阶段 :生产者产生消息,通过网络发送到 Broker 端。
存储阶段 :Broker 拿到消息,需要进行落盘,如果是集群版的 MQ 还需要同步数据到其他节点。
消费阶段 :消费者在 Broker 端拉数据,通过网络传输到达消费者端。
发生网络丢包、网络故障等这些会导致消息的丢失
在生产者发送消息之前,通过channeltxSelect开启一个事务,接着发送消息, 如果消息投递 server 失败,进行事务回滚channeltxRollback,然后重新发送, 如果 server 收到消息,就提交事务channeltxCommit
不过使用事务性能不好,这是同步 *** 作,一条消息发送之后会使发送端阻塞,以等待RabbitMQ Server的回应,之后才能继续发送下一条消息,生产者生产消息的吞吐量和性能都会大大降低。
使用确认机制,生产者将信道设置成 confirm 确认模式,一旦信道进入 confirm 模式,所有在该信道上面发布的消息都会被指派一个唯一的ID(从1开始),一旦消息被投递到所有匹配的队列之后,RabbitMQ 就会发送一个确认(BasicAck)给生产者(包含消息的唯一 deliveryTag 和 multiple 参数),这就使得生产者知晓消息已经正确到达了目的地了。
multiple 为 true 表示的是批量的消息确认,为 true 的时候,表示小于等于返回的 deliveryTag 的消息 id 都已经确认了,为 false 表示的是消息 id 为返回的 deliveryTag 的消息,已经确认了。
确认机制有三种类型
1、同步确认
2、批量确认
3、异步确认
同步模式的效率很低,因为每一条消息度都需要等待确认好之后,才能处理下一条;
批量确认模式相比同步模式效率是很高,不过有个致命的缺陷,一旦回复确认失败,当前确认批次的消息会全部重新发送,导致消息重复发送;
异步模式就是个很好的选择了,不会有同步模式的阻塞问题,同时效率也很高,是个不错的选择。
Kafaka 中引入了一个 broker。 broker 会对生产者和消费者进行消息的确认,生产者发送消息到 broker,如果没有收到 broker 的确认就可以选择继续发送。
只要 Producer 收到了 Broker 的确认响应,就可以保证消息在生产阶段不会丢失。有些消息队列在长时间没收到发送确认响应后,会自动重试,如果重试再失败,就会以返回值或者异常的方式告知用户。
只要正确处理 Broker 的确认响应,就可以避免消息的丢失。
RocketMQ 提供了3种发送消息方式,分别是:
同步发送:Producer 向 broker 发送消息,阻塞当前线程等待 broker 响应 发送结果。
异步发送:Producer 首先构建一个向 broker 发送消息的任务,把该任务提交给线程池,等执行完该任务时,回调用户自定义的回调函数,执行处理结果。
Oneway发送:Oneway 方式只负责发送请求,不等待应答,Producer 只负责把请求发出去,而不处理响应结果。
在存储阶段正常情况下,只要 Broker 在正常运行,就不会出现丢失消息的问题,但是如果 Broker 出现了故障,比如进程死掉了或者服务器宕机了,还是可能会丢失消息的。
防止在存储阶段消息额丢失,可以做持久化,防止异常情况(重启,关闭,宕机)。。。
RabbitMQ 持久化中有三部分:
消息的持久化,在投递时指定 delivery_mode=2(1是非持久化),消息的持久化,需要配合队列的持久,只设置消息的持久化,重启之后队列消失,继而消息也会丢失。所以如果只设置消息持久化而不设置队列的持久化意义不大。
对于持久化,如果所有的消息都设置持久化,会影响写入的性能,所以可以选择对可靠性要求比较高的消息进行持久化处理。
不过消息持久化并不能百分之百避免消息的丢失
比如数据在落盘的过程中宕机了,消息还没及时同步到内存中,这也是会丢数据的,这种问题可以通过引入镜像队列来解决。
镜像队列的作用:引入镜像队列,可已将队列镜像到集群中的其他 Broker 节点之上,如果集群中的一个节点失效了,队列能够自动切换到镜像中的另一个节点上来保证服务的可用性。(更细节的这里不展开讨论了)
*** 作系统本身有一层缓存,叫做 Page Cache,当往磁盘文件写入的时候,系统会先将数据流写入缓存中。
Kafka 收到消息后也会先存储在也缓存中(Page Cache)中,之后由 *** 作系统根据自己的策略进行刷盘或者通过 fsync 命令强制刷盘。如果系统挂掉,在 PageCache 中的数据就会丢失。也就是对应的 Broker 中的数据就会丢失了。
处理思路
1、控制竞选分区 leader 的 Broker。如果一个 Broker 落后原先的 Leader 太多,那么它一旦成为新的 Leader,必然会造成消息的丢失。
2、控制消息能够被写入到多个副本中才能提交,这样避免上面的问题1。
1、将刷盘方式改成同步刷盘;
2、对于多个节点的 Broker,需要将 Broker 集群配置成:至少将消息发送到 2 个以上的节点,再给客户端回复发送确认响应。这样当某个 Broker 宕机时,其他的 Broker 可以替代宕机的 Broker,也不会发生消息丢失。
消费阶段就很简单了,如果在网络传输中丢失,这个消息之后还会持续的推送给消费者,在消费阶段我们只需要控制在业务逻辑处理完成之后再去进行消费确认就行了。
总结:对于消息的丢失,也可以借助于本地消息表的思路,消息产生的时候进行消息的落盘,长时间未处理的消息,使用定时重推到队列中。
消息在 MQ 中的传递,大致可以归类为下面三种:
1、At most once: 至多一次。消息在传递时,最多会被送达一次。是不安全的,可能会丢数据。
2、At least once: 至少一次。消息在传递时,至少会被送达一次。也就是说,不允许丢消息,但是允许有少量重复消息出现。
3、Exactly once:恰好一次。消息在传递时,只会被送达一次,不允许丢失也不允许重复,这个是最高的等级。
大部分消息队列满足的都是At least once,也就是可以允许重复的消息出现。
我们消费者需要满足幂等性,通常有下面几种处理方案
1、利用数据库的唯一性
根据业务情况,选定业务中能够判定唯一的值作为数据库的唯一键,新建一个流水表,然后执行业务 *** 作和流水表数据的插入放在同一事务中,如果流水表数据已经存在,那么就执行失败,借此保证幂等性。也可先查询流水表的数据,没有数据然后执行业务,插入流水表数据。不过需要注意,数据库读写延迟的情况。
2、数据库的更新增加前置条件
3、给消息带上唯一ID
每条消息加上唯一ID,利用方法1中通过增加流水表,借助数据库的唯一性来处理重复消息的消费。
一、消息中间件相关知识
1、概述
消息队列已经逐渐成为企业IT系统内部通信的核心手段。它具有低耦合、可靠投递、广播、流量控制、最终一致性等一系列功能,成为异步RPC的主要手段之一。当今市面上有很多主流的消息中间件,如老牌的ActiveMQ、RabbitMQ,炙手可热的Kafka,阿里巴巴自主开发RocketMQ等。
2、消息中间件的组成
21 Broker
消息服务器,作为server提供消息核心服务
22 Producer
消息生产者,业务的发起方,负责生产消息传输给broker,
23 Consumer
消息消费者,业务的处理方,负责从broker获取消息并进行业务逻辑处理
24 Topic
25 Queue
26 Message
消息体,根据不同通信协议定义的固定格式进行编码的数据包,来封装业务数据,实现消息的传输
3 消息中间件模式分类
31 点对点
PTP点对点:使用queue作为通信载体
说明:
消息生产者生产消息发送到queue中,然后消息消费者从queue中取出并且消费消息。
消息被消费以后,queue中不再存储,所以消息消费者不可能消费到已经被消费的消息。 Queue支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费。
说明:
queue实现了负载均衡,将producer生产的消息发送到消息队列中,由多个消费者消费。但一个消息只能被一个消费者接受,当没有消费者可用时,这个消息会被保存直到有一个可用的消费者。
4 消息中间件的优势
41 系统解耦
交互系统之间没有直接的调用关系,只是通过消息传输,故系统侵入性不强,耦合度低。
42 提高系统响应时间
例如原来的一套逻辑,完成支付可能涉及先修改订单状态、计算会员积分、通知物流配送几个逻辑才能完成;通过MQ架构设计,就可将紧急重要(需要立刻响应)的业务放到该调用方法中,响应要求不高的使用消息队列,放到MQ队列中,供消费者处理。
43 为大数据处理架构提供服务
通过消息作为整合,大数据的背景下,消息队列还与实时处理架构整合,为数据处理提供性能支持。
44 Java消息服务——JMS
Java消息服务(Java Message Service,JMS)应用程序接口是一个Java平台中关于面向消息中间件(MOM)的API,用于在两个应用程序之间,或分布式系统中发送消息,进行异步通信。
5 消息中间件应用场景
51 异步通信
有些业务不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。
52 解耦
降低工程间的强依赖程度,针对异构系统进行适配。在项目启动之初来预测将来项目会碰到什么需求,是极其困难的。通过消息系统在处理过程中间插入了一个隐含的、基于数据的接口层,两边的处理过程都要实现这一接口,当应用发生变化时,可以独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。
53 冗余
有些情况下,处理数据的过程会失败。除非数据被持久化,否则将造成丢失。消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险。许多消息队列所采用的”插入-获取-删除”范式中,在把一个消息从队列中删除之前,需要你的处理系统明确的指出该消息已经被处理完毕,从而确保你的数据被安全的保存直到你使用完毕。
54 扩展性
因为消息队列解耦了你的处理过程,所以增大消息入队和处理的频率是很容易的,只要另外增加处理过程即可。不需要改变代码、不需要调节参数。便于分布式扩容。
55 过载保护
在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量无法提取预知;如果以为了能处理这类瞬间峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。
56 可恢复性
系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂掉,加入队列中的消息仍然可以在系统恢复后被处理。
57 顺序保证
在大多使用场景下,数据处理的顺序都很重要。大部分消息队列本来就是排序的,并且能保证数据会按照特定的顺序来处理。
58 缓冲
在任何重要的系统中,都会有需要不同的处理时间的元素。消息队列通过一个缓冲层来帮助任务最高效率的执行,该缓冲有助于控制和优化数据流经过系统的速度。以调节系统响应时间。
59 数据流处理
分布式系统产生的海量数据流,如:业务日志、监控数据、用户行为等,针对这些数据流进行实时或批量采集汇总,然后进行大数据分析是当前互联网的必备技术,通过消息队列完成此类数据收集是最好的选择。
6 消息中间件常用协议
61 AMQP协议
AMQP即Advanced Message Queuing Protocol,一个提供统一消息服务的应用层标准高级消息队列协议,是应用层协议的一个开放标准,为面向消息的中间件设计。基于此协议的客户端与消息中间件可传递消息,并不受客户端/中间件不同产品,不同开发语言等条件的限制。
优点:可靠、通用
62 MQTT协议
MQTT(Message Queuing Telemetry Transport,消息队列遥测传输)是IBM开发的一个即时通讯协议,有可能成为物联网的重要组成部分。该协议支持所有平台,几乎可以把所有联网物品和外部连接起来,被用来当做传感器和致动器(比如通过Twitter让房屋联网)的通信协议。
优点:格式简洁、占用带宽小、移动端通信、PUSH、嵌入式系统
63 STOMP协议
STOMP(Streaming Text Orientated Message Protocol)是流文本定向消息协议,是一种为MOM(Message Oriented Middleware,面向消息的中间件)设计的简单文本协议。STOMP提供一个可互 *** 作的连接格式,允许客户端与任意STOMP消息代理(Broker)进行交互。
优点:命令模式(非topic\queue模式)
64 XMPP协议
XMPP(可扩展消息处理现场协议,Extensible Messaging and Presence Protocol)是基于可扩展标记语言(XML)的协议,多用于即时消息(IM)以及在线现场探测。适用于服务器之间的准即时 *** 作。核心是基于XML流传输,这个协议可能最终允许因特网用户向因特网上的其他任何人发送即时消息,即使其 *** 作系统和浏览器不同。
优点:通用公开、兼容性强、可扩展、安全性高,但XML编码格式占用带宽大
65 其他基于TCP/IP自定义的协议
有些特殊框架(如:redis、kafka、zeroMq等)根据自身需要未严格遵循MQ规范,而是基于TCP\IP自行封装了一套协议,通过网络socket接口进行传输,实现了MQ的功能。
7 常见消息中间件MQ介绍
71 RocketMQ
阿里系下开源的一款分布式、队列模型的消息中间件,原名Metaq,30版本名称改为RocketMQ,是阿里参照kafka设计思想使用java实现的一套mq。同时将阿里系内部多款mq产品(Notify、metaq)进行整合,只维护核心功能,去除了所有其他运行时依赖,保证核心功能最简化,在此基础上配合阿里上述其他开源产品实现不同场景下mq的架构,目前主要多用于订单交易系统。
具有以下特点:
官方提供了一些不同于kafka的对比差异:
>mq3可使用OTG方式连接。
1、采用OTG线分别连接手机数据口和MP3数据口。
2、打开手机自带的文件管理器mp3已识别为一个外接储存器,在文件管理器中找到mp3文件,使用复制粘贴移动到mp3夹即可连接。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)