导入文本数据到R语言,怎么画图,请教下,谢谢。

导入文本数据到R语言,怎么画图,请教下,谢谢。,第1张

rt <- dataframe(x1=c(5000,2000), y1=c(1000,2000))
rt
plot(rt)
plot(rt$x1,rt$y1)

*** 作之前安装好ggplot2、vegan、ggpubr包。如下:

installpackages("ggplot2")
installpackages("ggpubr")

installpackages("vegan")

计算Shannon-香农指数和Simpson-辛普森指数的命令在vegan包中,计算各组显著性的命令在ggpubr包中;画图使用ggplot命令,在行使每个命令之前一定要加载相应的包,如下:

library(ggplot2)
library(ggpubr)

library(vegan)

拿到一个otu表格,要先计算香农指数和辛普森指数, *** 作如下:

otu=readtable('D:/r-working/feature-tabletaxonomytxt',rownames = 1,skip=1,header=T,commentchar ='',sep='\t')
#读取out表格

#'D:/feature tabletaxonomytxt'为文件路径,注意斜线方向

#rownames = 1指定第一列为行名

#skip=1跳过第一行不读

#header=T指定第一个有效行为列名

#sep='\t'表示指定制表符为分隔符

#commentchar=''表示设置注释符号为空字符‘’,这样#后面的内容就不会被省略

otu=otu[,-ncol(otu)]

#去除表格的最后一列,无用信息

otu=t(otu)

#表格转置,必须将样品名作为行名

shannon=diversity(otu,"shannon")

#计算香农指数,先加载vegan包

shannon

#查看香农指数

simpson=diversity(otu,"simpson")

#计算辛普森指数,先加载vegan包

simpson

#查看辛普森指数

alpha=dataframe(shannon,simpson,checknames=T)

#合并两个指数

writetable(alpha,"D:/r-working/alpha-summaryxls",sep='\t',quote=F)

#存储数据,注意路径使用反斜杠

将各样本进行分组,并进行画图, *** 作如下:

map<-readtable('D:/r-working/mapping_filetxt',rownames = 1,header=T,commentchar ='',sep='\t',checknames=F)

#读取分组表格

group<-map["Group1"]

#提取需要的分组,'Group1'是表中的分组列名,包括A,B,C三组

alpha<-alpha[match(rownames(group),rownames(alpha)),]

#重排alpha的行的顺序,使其与group的样本id(行名)一致

data<-dataframe(group,alpha,checkrows=T)

#合并两个表格'<-'与'='同属赋值的含义

p=ggplot(data=data,aes(x=Group1,y=shannon))+geom_boxplot(fill=rainbow(7)[2])

#data = data指定数据表格

#x=Group1指定作为x轴的数据列名

#y=shannon指定作为y轴的数据列名

#geom_boxplot()表示画箱线图

#fill=rainbow(7)[2]指定填充色

此处用到ggplot2包画箱线图,将画图函数赋值给p后,可以用‘+’不断进行图层叠加,给p增加新的特性
p

#查看p

mycompare=list(c('A','B'),c('A','C'),c('B','C'))

#指定多重比较的分组对

mycompare

p<-p+stat_compare_means(comparisons=mycompare,label = "psignif",method = 'wilcox')

#添加显著性标记的第一种方法,在此之前先加载ggpubr包

p<-p+ylim(2,55)

#调整图像的外观


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/13372959.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-23
下一篇 2023-07-23

发表评论

登录后才能评论

评论列表(0条)

保存