1、LVM介绍
LVM的安装 采用yum install lvm2即可
PV(Physical Volume)- 物理卷
物理卷在逻辑卷管理中处于最底层,它可以是实际物理硬盘上的 分区 ,也可以是整个 物理硬盘 ,也可以是 raid设备 。
VG(Volumne Group)- 卷组
卷组建立在物理卷之上,一个卷组中至少要包括一个物理卷,在卷组建立之后可动态添加物理卷到卷组中。一个逻辑卷管理系统工程中可以只有一个卷组,也可以拥有多个卷组。
LV(Logical Volume)- 逻辑卷
逻辑卷建立在卷组之上,卷组中的未分配空间可以用于建立新的逻辑卷,逻辑卷建立后可以动态地扩展和缩小空间。系统中的多个逻辑卷可以属于同一个卷组,也可以属于不同的多个卷组。
2、安装LVM管理软件与LVM使用方式
yum install lvm2
LVM的使用以及卷的创建需要遵循一定的规则,第一要先创建物理卷,然后创建逻辑卷组,然后创建逻辑卷的形式进行使用,最后在逻辑卷上创建文件系统后就可以正常使用了
3、创建物理卷PV
pvcreate /dev/sdb1 /dev/sdb2 /dev/sdb3
在这三个分区上创建物理卷PV,其实就是在分区上创建出中间的抽象层,就是写上部分数据即可。
Physical volume "/dev/sdb1" successfully created
Physical volume "/dev/sdb2" successfully created
Physical volume "/dev/sdb3" successfully created
出现这个创建成功
pvdisplay 显示已经创建的物理卷的详细信息
PVS 查看简略信息
PVSCAN 查看检录信息
4、创建逻辑卷组
vgcreate vg0 /dev/sdb1 /dev/sdb2 /dev/sdb3
创建名字为vg0的逻辑卷组,将磁盘分区sdb1-3添加到卷组内部去
vgdisplay 显示详细信息
vgs 显示简略信息
VG #PV #LV #SN Attr VSize VFree
vg0 3 0 0 wz--n- <1199g <1199g
5、创建逻辑卷
lvcreate -L 5G -n lv1 vg0
创建逻辑卷lv1 ,从逻辑卷组vg0中分出5G大小来
lvdisplay 显示详细信息
lvs 显示简略信息
6、LVM卷的挂在
需要对逻辑卷先创建文件系统,他的路径在/dev/vg0/lv1
mkfsext4 /dev/vg0/lv1 对逻辑卷1创建文件系统完成然后就可以挂在正常使用了
7、逻辑卷的扩容
1、LV的扩容 lvextend -L +1G /dev/vg0/lv1 对逻辑卷lv1扩容1G
2、扩容后调用命令resize2fs /dev/vg0/lv1 在df查看挂载就会显示分区变大了
8、逻辑卷组的扩容
1、增加物理卷的数量可以扩容
vgextend vg0 /dev/sdb4 将sdb4添加到逻辑卷组vg0里面去
9、LV(逻辑卷)缩减
1、卸载文件系统
umount
2、进行逻辑卷检查
e2fsck -f /dev/vg0/lv1
3、重新选定系统大小
resize2fs /dev/vg0/lv1 10G
4、修改逻辑卷大小
lvresize -L 10G /dev/vg0/lv1
10、VG(逻辑卷组)的缩减
1、卸载文件系
umount
2、将/dev/sdb4把 从vg0 中移除
vgreduce vg0 /dev/sdb4
11、删除
1、删除LV
lvremove /dev/vg0/lv1
2、删除VG
vgremove vg0
3、删除PV
pvremove /dev/sdb1
12、LVM快照
21、RAID(独立冗余磁盘阵列)
RAID技术通过把多个硬盘设备组合成一个容量更大的,安全性更好的磁盘阵列。把数据切割成许多区段后分别放在不同的物理磁盘上,然后利用分散读写技术来提升磁盘阵列整体的性能,同时把多个重要数据的副本同步到不同的物理设备上,从而起到了非常好的数据冗余备份效果。缺点就是磁盘利用率低。
22、RAID的分类目前来说至少有几十种,这里简单介绍一下最常见的四种,RAID0,RAID1,RAID10,RAID5。
1、RAID 0
RAID 0是最早出现的RAID模式,即Data Stripping数据分条技术。RAID 0是组建磁盘阵列中最简单的一种形式,只需要2块以上的硬盘即可,成本低,可以提高整个磁盘的性能和吞吐量。RAID 0没有提供冗余或错误修复能力,但实现成本是最低的。
2、RAID 1
RAID 1称为磁盘镜像,原理是把一个磁盘的数据镜像到另一个磁盘上,也就是说数据在写入一块磁盘的同时,会在另一块闲置的磁盘上生成镜像文件,在不影响性能情况下最大限度的保证系统的可靠性和可修复性上,只要系统中任何一对镜像盘中至少有一块磁盘可以使用,甚至可以在一半数量的硬盘出现问题时系统都可以正常运行,当一块硬盘失效时,系统会忽略该硬盘,转而使用剩余的镜像盘读写数据,具备很好的磁盘冗余能力。虽然这样对数据来讲绝对安全,但是成本也会明显增加,磁盘利用率为50%。
3、RAID0+1
RAID 0+1名称上我们便可以看出是RAID0与RAID1的结合体。在我们单独使用RAID 1也会出现类似单独使用RAID 0那样的问题,即在同一时间内只能向一块磁盘写入数据,不能充分利用所有的资源。为了解决这一问题,我们可以在磁盘镜像中建立带区集。因为这种配置方式综合了带区集和镜像的优势,所以被称为RAID 0+1。把RAID0和RAID1技术结合起来,数据除分布在多个盘上外,每个盘都有其物理镜像盘,提供全冗余能力,允许一个以下磁盘故障,而不影响数据可用性,并具有快速读/写能力。RAID0+1要在磁盘镜像中建立带区集至少4个硬盘。也有一种叫法叫RAID10
4、RAID5:分布式奇偶校验的独立磁盘结构
它的奇偶校验码存在于所有磁盘上。RAID5的读出效率很高,写入效率一般,块式的集体访问效率不错。因为奇偶校验码在不同的磁盘上,所以提高了可靠性。但是它对数据传输的并行性解决不好,而且控制器的设计也相当困难。在RAID 5中有“写损失”,即每一次写 *** 作,将产生四个实际的读/写 *** 作,其中两次读旧的数据及奇偶信息,两次写新的数据及奇偶信息。
总结:RAID0大幅度提升了设备的读写性能,但不具备容错能力。RAID1虽然十分注重数据安全,但磁盘利用率太低。RAID5就是raid0和RAID5的一种折中,既提升了磁盘读写能力,又有一定的容错能力,成本也低。RAID10就是RAID0和raid1的组合,大幅度提升读写能力,较强的容错能力,成本也较高。一般中小企业用RAID5,大企业采用RAID10。
23、安装madam命令
yum install madam
24、部分命令详解
-a 检测设备名称
-n 指定设备数量
-l 指定RAID级别
-C 创建
-v 显示过程
-f 模拟设备损坏
-r 移除设备
-Q 查看摘要信息
-D 查看详细信息
-S 停止RAID磁盘阵列
24、创建一个RAID5模式的磁盘阵列
mdadm -C /dev/md0 -ayes -l5 -n3 -x1 /dev/sdb[1-4]
-C--create 创建阵列
-a--auto 同意创建设备,如不加此参数时必须先使用mknod 命令来创建一个RAID设备,不过推荐使用-a yes参数一次性创建
-l --level 阵列模式,支持的阵列模式有 linear, raid0, raid1, raid4, raid5, raid6, raid10, multipath, faulty, container;
-n --raid-devices 阵列中活动磁盘的数目,该数目加上备用磁盘的数目应该等于阵列中总的磁盘数目;
25、查看RADI详情
mdadm -D /dev/md0
Raid Level : 阵列级别;
Array Size : 阵列容量大小;
Raid Devices : RAID成员的个数;
Total Devices : RAID中下属成员的总计个数,因为还有冗余硬盘或分区,也就是spare,为了RAID的正常运珩,随时可以推上去加入RAID的;State : clean, degraded, recovering 状态,包括三个状态,clean 表示正常,degraded 表示有问题,recovering 表示正在恢复或构建;
Active Devices : 被激活的RAID成员个数;
Working Devices : 正常的工作的RAID成员个数;
Failed Devices : 出问题的RAID成员;
Spare Devices : 备用RAID成员个数,当一个RAID的成员出问题时,用其它硬盘或分区来顶替时,RAID要进行构建,在没构建完成时,这个成员也会被认为是spare设备;
UUID : RAID的UUID值,在系统中是唯一的;
26、创建RAID配置文件
创建RAID 配置文件/etc/mdadmconf
RAID 的配置文件为/etc/mdadmconf,默认是不存在的,需要手工创建。
该配置文件的主要作用是系统启动的时候能够自动加载软RAID,同时也方便日后管理。但不是必须的,推荐对该文件进行配置。
我们这里需要创建这个文件,测试中发现,如果没有这个文件,则reboot 后,已经创建好的md0 会自动变成md127。
/etc/mdadmconf 文件内容包括:
由DEVICE 选项指定用于软RAID的所有设备,和ARRAY 选项所指定阵列的设备名、RAID级别、阵列中活动设备的数目以及设备的UUID号。
echo DEVICE /dev/sdb[1-4] >> /etc/mdadmconf
mdadm -Ds >> /etc/mdadmconf
26、RAID测试,RAID中模拟一个自盘出现故障
mdadm /dev/md0 -f /dev/sdb1 在之前创建的md0中分区/dev/sdb1出现故障
cat /proc/mdstat 查看重构过程
27、一处损坏的磁盘
mdadm /dev/md0 -r /dev/sdb1 在磁盘阵列md0中将磁盘或者分区
28、删除出现问题的磁盘
mdadm /dev/md0 -r /dev/sdb1
29、增加一块磁盘
mdadm /dev/md0 -a /dev/sdb1
添加磁盘会曾为热备盘,让热备盘转变为活动磁盘需要执行以下命令
mdadm -G /dev/md0 -n4 将序号为4的热备盘转转变为活动磁盘
增加后只是阵列的容量增加了,但是文件系统还没有增加,需要执行一下命令
resize2fs /dev/md0 将磁盘阵列的容量同步到文件系统去
30、 停止磁盘阵列
mdadm -S /dev/md0 停止/dev/md0磁盘阵列
mdadm --zero-superblock /dev/sdb[1-4] 清除所有磁盘上的超级块数据才行,要不没法删除
停止后还要删除配置文件,否则重启还会出现
fdisk -l 查看了一下磁盘情况,发现磁盘没有完全分配,数据盘也没有挂载(这个就不讲了)
输入lsblk进行磁盘分配查看,发现vda还有260G没有分配,这样就不用在vdb磁盘上分出来一块了,直接把剩下的进行分区;
现在开始正式步骤
1,磁盘分区:输入fdisk /dev/vda 进入分区,执行以下步骤
2,再次输入lsblk,发现不显示vda3
3,reboot重启,再次lsblk查看,vda3已经出现
4,输入pvs 查看
5,将新分区vda3创建pv ,输入pvcreate /dev/vda3
6,查看vg ,输入vgs
7,输入vgdisplay或lvdisplay查看vgName,然后扩容名称为centos的vg,输入vgextend centos /dev/vda3
8,查看lv,输入lvs
9,扩容根目录lv,输入 lvextend -L +165G /dev/mapper/centos-root (之所这样是想着留着些空间后续可以分配到其他目录)或者
lvextend -L +100%FREE /dev/mapper/centos-root(扩容所有剩余空间)
10,查看lsblk,发现扩容完成
11,输入xfs_growfs /dev/mapper/centos-root 在线自动扩展文件系统到最大的可用大小
如果使用ext4文件系统 resize2fs /dev/mapper/centos-root
12,进行重启完成 *** 作
LVM逻辑卷管理,是Linux环境下对磁盘分区进行管理的一种机制,LVM是建立在硬盘和分区之上的一个逻辑层,来提高磁盘分区管理的灵活性。通过LVM系统管理员可以轻松管理磁盘分区,如:将若干个磁盘分区连接为一个整块的卷组,形成一个存储池。管理员可以在卷组上随意创建逻辑卷组,并进一步在逻辑卷组上创建文件系统。管理员通过LVM可以方便的调整存储卷组的大小,并且可以对磁盘存储按照组的方式进行命名、管理和分配。当系统添加了新的磁盘,通过LVM管理员就不必将磁盘的文件移动到新的磁盘上以充分利用新的存储空间,而是直接扩展文件系统跨越磁盘即可。
一般来说,物理磁盘或分区之间是分隔的,数据无法跨盘或分区,而各磁盘或分区的大小固定,重新调整比较麻烦。LVM可以将这些底层的物理磁盘或分区整合起来,抽象成容量资源池,以划分成逻辑卷的方式供上层使用,其最主要的功能即是可以在无需关机无需重新格式化的情况下d性调整逻辑卷的大小。
LVM的优缺点
优点:
①文件系统可以跨多个磁盘,因此文件系统大小不会受物理磁盘的限制。
②可以在系统运行的状态下动态的扩展文件系统的大小。
③可以增加新的磁盘到LVM的存储池中。
④可以以镜像的方式冗余重要的数据到多个物理磁盘。
⑤可以方便的导出整个卷组到另外一台机器。
缺点:
①在从卷组中移除一个磁盘的时候必须使用reducevg命令。
②当卷组中的一个磁盘损坏时,整个卷组都会受到影响。
③因为加入了额外的 *** 作,存贮性能受到影响。
Linux和Windows都采用了MBR的磁盘管理方法,也就是先对一个硬盘进行分区,在对这个一般光盘进行格式化的方法;他们的区别是: Linux系统,是先进行磁盘分区,如果需要使用该分区,将其挂载到对应目录即可;而Windows则是自动将所有分区挂载好 传统的磁盘管理的缺点:不方便进行分区扩充、容易导致文件系统崩溃、不适用于作为生产环境的服务器、拷贝分区的时候要求强制卸载磁盘分区,分区转移时耗费的时间长;
LVM磁盘管理技术 是Linux环境下对磁盘管理的一种技术,是通过一个建立在硬盘和分区之上的逻辑层来提高磁盘分区的灵活性
物理卷(PV):就是真正的物理硬盘或物理分区
卷组(VG):是将多个物理硬盘整合到一起形成的逻辑卷组;也可以视作一块逻辑硬盘
逻辑卷(LV):卷组是一块逻辑硬盘,逻辑硬盘必须分区之后才能使用;逻辑卷可以视作是卷组的逻辑分区
物理扩展(PE):物理扩展是用来保存数据的最小单元
系统首先把物理硬盘合并为卷组;再通过卷组分区;将卷组(逻辑硬盘)分成逻辑分区(逻辑卷)进行使用;
把物理硬盘分成分区,也可以使用一整块的物理硬盘;把物理硬盘分区建立为物理卷(PV)也可以把整块物理硬盘都建立为物理卷;把刚刚划分的物理卷合为卷组(VG)卷组就已经可以动态的调整大小了,最后把卷组划分成逻辑卷,其中逻辑卷也是可以随时划分大小的
pvcreate命令在系统中一般用于创建物理卷;
语法结构
在使用这个命令的时候不要对存放Linux系统的盘符进行进行使用;我们在创建物理卷的时候都是对逻辑分区进行创建的;扩展分区(Extend)不能进行创建物理卷
pvdisplay 命令用于查看当前的分区情况
语法格式以及常用参数:
查看我们刚刚创建的物理卷
pvremove命令常用于删除对应的物理卷
语法结构:
删除我们刚刚创建的物理卷
vgcreate 命令的作用是将一个或多个物理卷整合成一个卷组;在创建卷组之前我们需要保证系统中有足够的除系统存放卷本身的物理卷(使用pvscan查看)需要注意的是,存放Linux的系统物理卷不能被划分到自定义卷组中、 常用参数:-s:设定PE(最小物理存储单元)的大小、-l:最大逻辑卷数量、-p:允许存在的最大物理卷数量
语法结构:
将我们刚刚创建物理卷添加到卷组之中
vgdisplay 这个命令可以用来查看我们创建的卷组; 常见的参数 -s 卷组信息以短格式输出 ;vgdisplay可以查看对应卷组的简短信息,所以相对于pvdisplay用处又大了那么一点
语法格式:
查看刚刚创建的卷组和某一个卷组的信息
同样:vgscan 命令也可以查看当前卷组使用情况的简短信息
vgremove 命令的作用是删除指定的卷组
语法结构:
删除我们刚刚创建的卷组
注意:当删除含有逻辑卷的卷组的时候系统会提示是否删除对应卷组和对应逻辑卷,只有在两个都输入:y之后系统才会删除对应的卷组
lvcreate 命令作用是在一个指定的卷组中创建一块逻辑卷,前提是要求有指定的卷组; 常用参数:-L:规定创建的逻辑卷大小(直接写大小就可以)、-l:通过PE划分逻辑卷的大小(后面接的数字是PE的个数)
语法结构:
在指定的卷组里创建逻辑卷
lvdisplay 命令可用于查看逻辑卷的详细信息,也可以用来查看指定逻辑卷的详细信息 参数:-m:查看对应逻辑卷的挂载信息
语法结构:
检查指定的逻辑卷,并查看指定逻辑卷的挂载信息:
管理逻辑卷大小的常用命令是lvextend 命令和 lvreduce 命令分别表示逻辑卷大小的扩充和减少, 其中lvextend命令表示逻辑卷大小扩充,常用参数 -L(指的是扩充的具体大小)、-l(指的是扩充的LE块数量);lvextend命令表示逻辑卷大小的减小,常用参数-L(指的是减小的具体大小)、-l(指的是减小的LE块数量)
语法结构:
对我们指定的两个逻辑卷分别进行容量的增加和减少,并挂载对应的逻辑卷
这是 Linux 中 LVM(逻辑卷管理)的完整初学者指南。
在本教程中,您将了解 LVM 的概念、它的组件以及为什么要使用它。
我不会仅限于理论上的解释,我还将展示在 Linux 中创建和管理 LVM 的动手示例。
简而言之,我将为您提供在现实世界中开始使用 LVM 所需的所有必要信息。
LVM 代表逻辑卷管理。这是管理存储系统的另一种方法,而不是传统的基于分区的方法。在 LVM 中,您无需创建分区,而是创建逻辑卷,然后您可以像挂载磁盘分区一样轻松地将这些卷挂载到文件系统中。
LVM 包含三个主要组件:
尽管该列表由三个部分组成,但其中只有两个是分区系统的直接对应部分,下表记录了这一点。
物理卷没有任何直接对应物,但我很快就会谈到这一点。
LVM 的主要优点是调整卷或卷组的大小非常容易。它抽象出了所有丑陋的部分(分区、原始磁盘),并为我们留下了一个中央存储池可供使用。
如果您曾经经历过分区大小调整的恐惧,那么您会想要使用 LVM。
这篇文章不仅仅是理论。在此过程中,我将展示实际的命令示例,学习某些东西的最佳方法是亲身实践。为此,我建议您使用虚拟机。
为了帮助你,我已经准备了一个简单的 Vagrantfile,你可以用它来用 VirtualBox 启动一个非常轻量级的虚拟机。此虚拟机具有三个额外的磁盘,您和我可以将它们用于下面的命令示例。
在文件系统的某处创建一个目录,并将以下内容保存在该文件中,名为Vagrantfile
或者,如果您愿意,可以使用wget或curl从我的 gist 下载文件。
确保你安装了Vagrant和VirtualBox。
一旦 Vagrantfile 就位,将环境变量设置VAGRANT_EXPERIMENTAL为disks
最后,使用以下命令启动虚拟机(确保您与 Vagrantfile 位于同一目录中):
机器运行后,您可以使用vagrant sshSSH 连接到它并运行本文中的示例命令。
完成后请记住vagrant destroy从与 Vagrantfile 相同的目录运行。
在您可以使用任何命令之前,您需要安装该lvm2软件包。这应该预装在大多数现代发行版中,尤其是基于 Ubuntu 的发行版中。但是,在继续之前,我不得不提到这一点。要安装lvm2,请查阅您的发行版的文档。
对于这个动手演练,我构建了一个具有 40G 根存储(不重要)和三个大小为 5G 的外部磁盘的虚拟机。这些磁盘的大小是任意的。
如您所见,我将使用的设备sdc是sdd和sde。
还记得我告诉过你 LVM 包含三个主要组件吗?
是时候一一见他们了。
关于 LVM,您首先需要了解的是物理卷。物理卷是用于实现抽象即逻辑卷的原材料或构建块。简单来说,物理卷是 LVM 系统的逻辑单元。
物理卷可以是任何东西,原始磁盘或磁盘分区。创建和初始化物理卷是一回事。两者都意味着您只是在为进一步的 *** 作准备构建块(即分区、磁盘)。这将在瞬间变得更加清晰。
实用程序:pv所有管理物理卷的实用程序都以P hysical Volume的字母开头。例如pvcreate, pvchange,pvs等pvdisplay。
您可以使用原始未分区磁盘或分区本身来创建物理卷。
正如我之前提到的,我的虚拟机连接了三个外部驱动器,让我们从/dev/sdc
我们使用pvcreate命令来创建物理卷。只需将设备名称传递给它即可。
你应该看到这样的东西:-
接下来我将/dev/sdd分成相等的部分。使用任何工具cfdisk,,,等parted,fdisk有很多工具可以完成这项工作。
您现在可以在一个步骤中从这两个分区中快速创建另外两个物理卷,同时将这两个设备传递给pvcreate。
看一看:-
您可以使用三个命令来获取可用物理卷的列表pvscan,pvs和pvdisplay。您通常不需要向这些命令传递任何内容。
pvscan:-
pvs:-
pvdisplay:-
正如您所看到的,除了列出物理卷之外,这些命令还为您提供了大量有关这些卷的其他信息。
pvremove您可以使用该命令删除物理卷。就像pvcreate,只需将设备(初始化为物理卷)传递给pvremove命令。
为了演示,我将从/dev/sdd2列表中删除。
输出应与此相同:-
现在列出物理卷sudo pvs
/dev/sdd2不再在这里。
卷组是物理卷的集合。它是 LVM 中的下一个抽象级别。卷组是结合了多个原始存储设备的存储容量的存储池。
实用程序:所有卷组实用程序名称都以 开头vg,代表卷组,例如、等。vgcreatevgsvgrename
卷组是使用该vgcreate命令创建的。的第一个参数vgcreate是您要为该卷组指定的名称,其余的是要支持存储池的物理卷的列表。
例子:-
列出卷组类似于列出物理卷,您可以使用具有不同详细级别的不同命令vgdisplay、vgscan和vgs。
我个人更喜欢vgs命令,sudo vgs
您可以使用以下命令列出连接到特定卷组的所有物理卷:-
例子:-
您还可以获得物理卷的计数。
例子:-
扩展卷组意味着向卷组添加额外的物理卷。为此,vgextend使用该命令。语法很简单:-
让我们将lvm_tutorial音量扩大/dev/sdd2
专注于输出:-
在物理卷部分,我们最终将其/dev/sdd2作为物理卷删除,但必须将分区或原始磁盘初始化为物理卷,否则 LVM 将无法将其作为卷组的一部分进行管理。所以在将它添加到卷组之前vgextend做好准备。/dev/sdd2
现在列出附加到此卷组的物理卷,以确保安全。
输出:-
/dev/sdd2现在按预期在列表中。
就像扩展一个卷组意味着添加另一个物理卷一样,减少它意味着删除一个或多个物理卷。
我们使用vgreduce命令来执行此 *** 作。一般语法如下:-
让我们删除物理卷/dev/sdc和/dev/sdd1
例子:-
再次列出物理卷。
输出:-
那两个物理卷不见了。
现在,为了本文的其余部分,将这两个物理卷添加回来。
vgremove您可以使用该命令删除逻辑卷。
现在不要运行此命令,否则您必须重新创建卷组。如果您想对其进行测试,请在本文的最后运行它。
这是您将主要使用的内容。逻辑卷就像一个分区,但它不是位于原始磁盘之上,而是位于卷组之上。你可以,
在本节中,您将学习,
实用程序 :所有卷组实用程序名称都以 开头lv,代表逻辑卷。例如, ,等等, ,等等lvcreatelvslvreducevgcreatevgsvgrename
lvcreate使用该命令创建逻辑卷。常用的语法如下所示,
在虚拟机上运行以下命令:
示例输出:
正如我之前所说,您可以将文件系统放在逻辑卷上,也可以将其挂载到文件系统的任何位置。
/dev/ / 创建后,您可以在路径中找到逻辑卷。例如,在我们的例子中,音量将在 /dev/lvm_tutorial/lv1
现在您可以像使用任何分区一样使用它。用ext4格式化,
将它安装在当前目录结构中的某个位置,例如/mnt,
您可以使用命令扩展逻辑卷lvextend并使用命令减小其大小lvreduce。或者,您可以使用单个命令lvresize来完成这两项任务。
首先让我们看看卷组中是否还有剩余空间。
输出:-
根据输出,我还有一些空间,所以让我们将卷大小增加 2GB。
请记住,逻辑卷仍安装在/mnt
使用以下命令调整卷大小:
一般语法是这样的:
后面的符号 + 或 --L取决于您是尝试增加音量还是分别减小音量。
卷大小增加后,文件系统也必须调整大小。对于 ext4,要使用的命令是resize2fs
输出:
减少逻辑卷是一项稍微复杂的任务,我不会在本文中讨论这个问题。我将把这个卷的大小减少 1GB。
lvremove您可以使用该命令删除逻辑卷。命令语法如下:-
在虚拟机上运行此命令:-
输出:-
在逻辑卷、物理卷和卷组上还有许多其他 *** 作可行,但不可能将所有这些都写到一篇文章中。
我/dev/sde在虚拟机中为您多留了一个磁盘,使用它,练习本文中的一些命令,创建一个新的卷组,扩展一个现有的卷组,只是练习。
我希望这篇文章对你有所帮助,如果你想在以后看到更多关于这方面的内容,请在下面的评论部分告诉我。
需要知道LVM卷最大容量创建超过256GB的LVM卷需要决定一个LVM逻辑卷能扩展到多大。得出LVM卷所采用的扩展大小解决方案对lvm2创建的LVM卷来说,容量大小取决于kernel的限制 (当然,还有你的磁盘空间)。对lvm1创建的LVM卷来说,LVM逻辑卷最大可能容量取决于所用扩展大小。计算公式是:65534 扩展大小 = 最大逻辑卷大小SUSE Linux缺省扩展大小是4MB。 所以,缺省逻辑卷最大值是4MB 65534 = 256 GB。扩展大小可能取值区间为8KB到16GB,以二进制计。如果设定最大扩展大小,那么最大卷大约有1PB:65534 16GB = 1,048,544 GB注意:你所使用的文件系统需要对你的逻辑卷大小提供支持。SLES缺省文件系统为Reiserfs,它最大支持16TB空间。如果你打算对一个已经存在的逻辑卷进行扩展,使用“vgdisplay”命令 查看所用的扩展大小。附加信息从lvm1转换为lvm2的卷大小取决于lvm1的限制。如需更多信息,请查看vgcreate man帮助,“man 8 vgcreate”, 然后搜索“PhysicalExtentSize”字串即可。本文档所涉及商标归相应持有者所有。请参照产品手册中完整的商标权信息。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)