LINUX下,C语言,使用realloc与calloc的问题

LINUX下,C语言,使用realloc与calloc的问题,第1张

修改以下函数

char** resize(char *original[],int ori_size)

{

char **p

p=(char**)realloc(original, ori_size*2*(sizeof(char*)))//这里要返回新的内存地址

int i

for(i=ori_sizei<ori_size*2++i)

{

p[i] = (char*)calloc(MAX_LENGTH, sizeof(char))//这里是要给新内存后赋值

strcpy(p[i], "aaa")

}

printf("Finish\n")

return p//返回新的地址头

}

在linux下所有设备都是文件。所以对摄像头的 *** 作其实就是对文件的 *** 作。USB摄像头的设备文件就是在/dev目录下的video0(假如只有一个摄像头)。在linux下 *** 作摄像头就是使用v4l2对摄像头进行的 *** 作, *** 作步骤如下

打开设备文件。

int fd=open(”/dev/video0″,O_RDWR)

2. 取得设备的capability,看看设备具有什么功能,比如是否具有输入,或者音频输入输出等。VIDIOC_QUERYCAP,struct v4l2_capability

v4l2_std_id std

do {

ret= ioctl(fd, VIDIOC_QUERYSTD, std)

} while (ret == -1  errno == EAGAIN)

switch (std) {

case V4L2_STD_NTSC:

//……

case V4L2_STD_PAL:

//……

}

3. 选择输入,一个设备可以有多个输入。VIDIOC_S_INPUT,struct v4l2_input(可不要)

4. 设置的制式和帧格式,制式包括PAL,NTSC,帧的格式个包括宽度和高度等。

VIDIOC_S_STD,VIDIOC_S_FMT,struct v4l2_std_id,struct v4l2_format

struct v4l2_format fmt

memset ( fmt, 0, sizeof(fmt) )

fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE

fmt.fmt.pix.width = 320

fmt.fmt.pix.height = 240

fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_JPEG

if (ioctl(fd, VIDIOC_S_FMT, fmt) <0)

{

printf("set format failed\n")

//return 0

}

5. 向驱动申请帧缓冲,一般不超过5个。struct v4l2_requestbuffers

struct v4l2_requestbuffers req

memset(req, 0, sizeof (req))

req.count = 4

req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE

req.memory = V4L2_MEMORY_MMAP

if (ioctl(fd,VIDIOC_REQBUFS,req) == -1)

{

perror("VIDIOC_REQBUFS error \n")

//return -1

}

6.申请物理内存

将申请到的帧缓冲映射到用户空间,这样就可以直接 *** 作采集到的帧了,而不必去复制。将申请到的帧缓冲全部入队列,以便存放采集到的数据.VIDIOC_QBUF,struct v4l2_buffer

VideoBuffer* buffers = calloc( req.count, sizeof(VideoBuffer) )

printf("sizeof(VideoBuffer) is %d\n",sizeof(VideoBuffer))

struct v4l2_buffer buf

for (numBufs = 0numBufs <req.countnumBufs++)

{

memset( buf, 0, sizeof(buf) )

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE

buf.memory = V4L2_MEMORY_MMAP

buf.index = numBufs

if (ioctl(fd, VIDIOC_QUERYBUF, buf) <0)

{

printf("VIDIOC_QUERYBUF error\n")

//return -1

}

printf("buf len is %d\n",sizeof(buf))

//内存映射

buffers[numBufs].length = buf.length

buffers[numBufs].offset = (size_t) buf.m.offset

buffers[numBufs].start = mmap (NULL, buf.length,PROT_READ | PROT_WRITE, MAP_SHARED, fd, buf.m.offset)

printf("buffers.length = %d,buffers.offset = %d ,buffers.start[0] = %d\n",buffers[numBufs].length,buffers[numBufs].offset,buffers[numBufs].start[0])

printf("buf2 len is %d\n",sizeof(buffers[numBufs].start))

if (buffers[numBufs].start == MAP_FAILED)

{

perror("buffers error\n")

//return -1

}

if (ioctl (fd, VIDIOC_QBUF, buf) <0)

{

printf("VIDIOC_QBUF error\n")

//return -1

}

}

7. 开始的采集。

enum v4l2_buf_type type

type = V4L2_BUF_TYPE_VIDEO_CAPTURE

if (ioctl (fd, VIDIOC_STREAMON, type) <0)

{

printf("VIDIOC_STREAMON error\n")

// return -1

}

8. 出队列以取得已采集数据的帧缓冲,取得原始采集数据。VIDIOC_DQBUF, 将缓冲重新入队列尾,这样可以循环采集。VIDIOC_QBUF

if (ioctl(fd, VIDIOC_DQBUF, buf) <0)

{

perror("VIDIOC_DQBUF failed.\n")

//return -1

}

buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE

buf.memory = V4L2_MEMORY_MMAP

unsigned char *ptcur = buffers[numBufs].start

DEBUG("buf.bytesused = %d \n",buf.bytesused)

int i1

for(i1=0i1<buf.bytesusedi1++)

{

if((buffers[numBufs].start[i1] == 0xFF)  (buffers[numBufs].start[i1+1] == 0xC4))

{

DEBUG("huffman table finded! \nbuf.bytesused = %d\nFFC4 = %d \n",buf.bytesused,i1)

break

}

}

if(i1 == buf.bytesused)printf("huffman table don't exist! \n")

int i

for(i=0i<buf.bytesusedi++)

{

if((buffers[numBufs].start[i] == 0xFF)  (buffers[numBufs].start[i+1] == 0xD8)) break

ptcur++

}

DEBUG("i=%d,FF=%02x,D8=%02x\n",i,buffers[numBufs].start[i],buffers[numBufs].start[i+1])

int imagesize =buf.bytesused - i

DEBUG("buf.bytesused = %d \n",buf.bytesused)

DEBUG ("imagesize = %d \n",imagesize)

9. 停止的采集。VIDIOC_STREAMOFF

10. 关闭设备。close(fd)

.三种方法实现Linux系统调用

投稿:lijiao 字体:[增加 减小] 类型:转载 时间:2016-01-03 我要评论

这篇文章主要介绍了三种方法实现Linux系统调用,感兴趣的朋友可以参考一下

..系统调用(System Call)是 *** 作系统为在用户态运行的进程与硬件设备(如CPU、磁盘、打印机等)进行交互提供的一组接口。当用户进程需要发生系统调用时,CPU 通过软中断切换到内核态开始执行内核系统调用函数。下面介绍Linux 下三种发生系统调用的方法:

一、通过 glibc 提供的库函数

glibc 是 Linux 下使用的开源的标准 C 库,它是 GNU 发布的 libc 库,即运行时库。glibc 为程序员提供丰富的 API(Application Programming Interface),除了例如字符串处理、数学运算等用户态服务之外,最重要的是封装了 *** 作系统提供的系统服务,即系统调用的封装。那么glibc提供的系统调用API与内核特定的系统调用之间的关系是什么呢?

1.通常情况,每个特定的系统调用对应了至少一个 glibc 封装的库函数,如系统提供的打开文件系统调用 sys_open 对应的是 glibc 中的 open 函数;

2.其次,glibc 一个单独的 API 可能调用多个系统调用,如 glibc 提供的 printf 函数就会调用如 sys_open、sys_mmap、sys_write、sys_close 等等系统调用;

3.另外,多个 API 也可能只对应同一个系统调用,如glibc 下实现的 malloc、calloc、free 等函数用来分配和释放内存,都利用了内核的 sys_brk 的系统调用。

二、使用 syscall 直接调用

使用上面的方法有很多好处,首先你无须知道更多的细节,如 chmod 系统调用号,你只需了解 glibc 提供的 API 的原型;其次,该方法具有更好的移植性,你可以很轻松将该程序移植到其他平台,或者将 glibc 库换成其它库,程序只需做少量改动。

但有点不足是,如果 glibc 没有封装某个内核提供的系统调用时,我就没办法通过上面的方法来调用该系统调用。如我自己通过编译内核增加了一个系统调用,这时 glibc 不可能有你新增系统调用的封装 API,此时我们可以利用 glibc 提供的syscall 函数直接调用。该函数定义在 unistd.h 头文件中。。。三、通过 int 指令陷入

如果我们知道系统调用的整个过程的话,应该就能知道用户态程序通过软中断指令int 0x80 来陷入内核态(在Intel Pentium II 又引入了sysenter指令),参数的传递是通过寄存器,eax 传递的是系统调用号,ebx、ecx、edx、esi和edi 来依次传递最多五个参数,当系统调用返回时,返回值存放在 eax 中。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/7103430.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-01
下一篇 2023-04-01

发表评论

登录后才能评论

评论列表(0条)

保存