在Linux里安装chrome的 *** 作步骤如下:
一、添加PPA
从Google Linux Repository(http://www.google.com/linuxrepositories/)下载安装Key,或把下面的代码复制进终端,回车,需要管理员密码
wget -q -O - https://dl-ssl.google.com/linux/linux_signing_key.pub | sudo apt-key add -
Key安装好后,在终端输入:
sudo sh -c 'echo "deb http://dl.google.com/linux/chrome/deb/ stable main" >>/etc/apt/sources.list.d/google-chrome.list'
二、更新
在终端输入:sudo apt-get update
三、安装
安装稳定版Chrome,在终端输入:sudo apt-get install google-chrome-stabl
安装Beta版Chrome,在终端输入:sudo apt-get install google-chrome-bet
安装不稳定版Chrome,在终端输入:sudo apt-get install google-chrome-unstable
HTTP 3 ,它来了,QUIC(quick udp internet connection “快速 UDP 互联网连接”)正如其名一样,它就是快。其正在标准化为新一代的互联网传输协议。是由google提出的使用udp进行多路并发的传输协议。
QUIC解决了什么问题呢?从上世纪90年代至今,互联网一直按照一成不变的模式发展着。使用ipv4进行路由,使用tcp进行连接层面的拥塞控制,并保证其传输的可靠性,使用tls层进行安全加密和身份验证,使用http进行应用的数据传输。
这么多年的发展,这些协议只是小部分或者细节上有了改变,tcp提出了几个新的拥塞控制算法,tls改变了加密方式,http层进化出了h2。但是互联网发展至今,网络传输的内容越来越大,用户对传输的时延,带宽提出越来越大的要求。
tcp虽然也在拥塞控制上提出了一些优秀的拥塞控制算法,如BBR但是限制于其对 *** 作系统内核版本的要求,tcp 的 TFO,windows *** 作系统又支持不好等。导致想要切换成更高效的协议成本巨大。
这里列出几个主要的矛盾。
1、协议历史悠久导致中间设备僵化。
2、依赖于 *** 作系统的实现导致协议本身僵化。
3、建立连接的握手延迟大。
4、队头阻塞。
QUIC孕育而生,其抛开了TCP直接采用UDP,如一些拥塞算法,可靠性保证机制,不再依赖 *** 作系统内核,而是可以自定义。
Quic 相比现在广泛应用的 http2+tcp+tls 协议有如下优势:
1、减少了 TCP 三次握手及 TLS 握手时间。
2、改进的拥塞控制。
3、避免队头阻塞的多路复用。
4、连接迁移。
5、前向冗余纠错。
有些防火墙只允许通过 80 和 443,不放通其他端口。NAT 网关在转换网络地址时重写传输层的头部,有可能导致双方无法使用新的传输格式。因为通信协议栈都是固化到 *** 作系统中的,只能通过内核参数进行调整,但是这样的调整极其有限,如果想要新加协议,只能重新编译内核。而现实是,可能还有一些Centos5 还作为某些古董公司的线上服务器。另外,windows xp 可能还是某些事业单位的办公电脑上装的 *** 作系统,尽管xp的时代已经过去20年了。另外TCP Fast Open 也在2013年就提出了,但是windows *** 作系统也有些不支持。
知道一个首次https网站的访问都要有哪些步骤吗?dns解析需要1个RTT,TCP三次握手,HTTP 302 跳转 HTTPS又需要RTT,TCP重新握手。TLS握手再消耗2个。解析CA的DNS(因为浏览器获取到证书后,有可能需要发起 OCSP 或者 CRL 请求,查询证书状态)再对CA进行TCP握手,OCSP响应。密钥协商又是RTT。当然这种情况是最极端的,大部分情况下不是所有流程都需要走一遍的。(参考 大型网站的 HTTPS 实践(二)-- HTTPS 对性能的影响 )
基于以上的原因,QUIC选择了UDP。没有了三次握手,在应用层面完成了传输的可靠性,拥塞控制还有TLS的安全性。只要应用软件的客户端和服务端支持就行,绕开了 *** 作系统内核版本这个硬骨头。
在HTTPS over TCP+TLS的时代。HTTPS需要3个RTT,在session 复用的情况下是2个RTT。而QUIC做到了1RTT和会话复用的0RTT。
QUIC的TLS只能使用TLS1.3,这就可以做到PSK的0RTT。
TCP 的拥塞控制实际上包含了四个算法:慢启动,拥塞避免,快速重传,快速恢复。其中TCP中拥塞控制是被编译进内核中的,如果想要更改就需要改变内核参数,但是想要对已有的拥塞控制算法进行更改就需要重新编译内核,Linux 4.9 中引入了基于时延的拥塞控制算法 BBR,这打破了以往是靠丢包驱动的拥塞控制算法,但是想要在TCP中使用,就必须升级内核至4.9以上。
QUIC 协议当前默认使用了 TCP 协议的 Cubic 拥塞控制算法 [6],同时也支持 CubicBytes, Reno, RenoBytes, BBR, PCC 等拥塞控制算法。
QUIC和TCP的对比
其中α 从 0到 1(RFC 推荐 0.9),越大越平滑
如 UBOUND为1分钟,LBOUND为 1 秒钟, β从 1.3 到 2 之间
对于QUIC
参考: 科普:QUIC协议原理分析 罗成
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)