a) 首先,你要有一台PC(这不废话么^_^),装好了Linux。
b) 安装好GCC(这个指的是host gcc,用于编译生成运行于pc机程序的)、make、ncurses等工具。
c) 下载一份纯净的Linux内核源码包,并解压好。
注意,如果你是为当前PC机编译内核,最好使用相应的Linux发行版的源码包。
不过这应该也不是必须的,因为我在我的Fedora 13上(其自带的内核版本是2.6.33.3),就下载了一个标准的内核linux-2.6.32.65.tar.xz,并且顺利的编译安装成功了,上电重启都OK的。不过,我使用的.config配置文件,是Fedora 13自带内核的配置文件,即/lib/modules/`uname -r`/build/.config
d) 如果你是移植Linux到嵌入式系统,则还要再下载安装交叉编译工具链。
例如,你的目标单板CPU可能是arm或mips等cpu,则安装相应的交叉编译工具链。安装后,需要将工具链路径添加到PATH环境变量中。例如,你安装的是arm工具链,那么你在shell中执行类似如下的命令,假如有类似的输出,就说明安装好了。
[root@localhost linux-2.6.33.i686]# arm-linux-gcc --version
arm-linux-gcc (Buildroot 2010.11) 4.3.5
Copyright (C) 2008 Free Software Foundation, Inc.
This is free softwaresee the source for copying conditions. There is NO
warrantynot even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
注:arm的工具链,可以从这里下载:回复“ARM”即可查看。
二、设置编译目标
在配置或编译内核之前,首先要确定目标CPU架构,以及编译时采用什么工具链。这是最最基础的信息,首先要确定的。
如果你是为当前使用的PC机编译内核,则无须设置。
否则的话,就要明确设置。
这里以arm为例,来说明。
有两种设置方法():
a) 修改Makefile
打开内核源码根目录下的Makefile,修改如下两个Makefile变量并保存。
ARCH := arm
CROSS_COMPILE := arm-linux-
注意,这里cross_compile的设置,是假定所用的交叉工具链的gcc程序名称为arm-linux-gcc。如果实际使用的gcc名称是some-thing-else-gcc,则这里照葫芦画瓢填some-thing-else-即可。总之,要省去名称中最后的gcc那3个字母。
b) 每次执行make命令时,都通过命令行参数传入这些信息。
这其实是通过make工具的命令行参数指定变量的值。
例如
配置内核时时,使用
make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig
编译内核时使用
make ARCH=arm CROSS_COMPILE=arm-linux-
注意,实际上,对于编译PC机内核的情况,虽然用户没有明确设置,但并不是这两项没有配置。因为如果用户没有设置这两项,内核源码顶层Makefile(位于源码根目录下)会通过如下方式生成这两个变量的值。
SUBARCH := $(shell uname -m | sed -e s/i.86/i386/ -e s/sun4u/sparc64/ \
-e s/arm.*/arm/ -e s/sa110/arm/ \
-e s/s390x/s390/ -e s/parisc64/parisc/ \
-e s/ppc.*/powerpc/ -e s/mips.*/mips/ \
-e s/sh[234].*/sh/ )
ARCH?= $(SUBARCH)
CROSS_COMPILE ?=
经过上面的代码,ARCH变成了PC编译机的arch,即SUBARCH。因此,如果PC机上uname -m输出的是ix86,则ARCH的值就成了i386。
而CROSS_COMPILE的值,如果没配置,则为空字符串。这样一来所使用的工具链程序的名称,就不再有类似arm-linux-这样的前缀,就相当于使用了PC机上的gcc。
最后再多说两句,ARCH的值还需要再进一步做泛化。因为内核源码的arch目录下,不存在i386这个目录,也没有sparc64这样的目录。
因此顶层makefile中又构造了一个SRCARCH变量,通过如下代码,生成他的值。这样一来,SRCARCH变量,才最终匹配到内核源码arch目录中的某一个架构名。
SRCARCH := $(ARCH)
ifeq ($(ARCH),i386)
SRCARCH := x86
endif
ifeq ($(ARCH),x86_64)
SRCARCH := x86
endif
ifeq ($(ARCH),sparc64)
SRCARCH := sparc
endif
ifeq ($(ARCH),sh64)
SRCARCH := sh
endif
三、配置内核
内核的功能那么多,我们需要哪些部分,每个部分编译成什么形式(编进内核还是编成模块),每个部分的工作参数如何,这些都是可以配置的。因此,在开始编译之前,我们需要构建出一份配置清单,放到内核源码根目录下,命名为.config文件,然后根据此.config文件,编译出我们需要的内核。
但是,内核的配置项太多了,一个一个配,太麻烦了。而且,不同的CPU架构,所能配置的配置项集合,是不一样的。例如,某种CPU的某个功能特性要不要支持的配置项,就是与CPU架构有关的配置项。所以,内核提供了一种简单的配置方法。
以arm为例,具体做法如下。
a) 根据我们的目标CPU架构,从内核源码arch/arm/configs目录下,找一个与目标系统最接近的配置文件(例如s3c2410_defconfig),拷贝到内核源码根目录下,命名为.config。
注意,如果你是为当前PC机编译内核,最好拷贝如下文件到内核源码根目录下,做为初始配置文件。这个文件,是PC机当前运行的内核编译时使用的配置文件。
/lib/modules/`uname -r`/build/.config
这里顺便多说两句,PC机内核的配置文件,选择的功能真是多。不编不知道,一编才知道。Linux发行方这样做的目的,可能是想让所发行的Linux能够满足用户的各种需求吧。
b) 执行make menuconfig对此配置做一些需要的修改,退出时选择保存,就将新的配置更新到.config文件中了。
注
采用交叉编译的主要原因在于,多数嵌入式目标系统不能提供足够的资源供编译过程使用,因而只好将编译工程转移到高性能的主机中进行。linux下的交叉编译环境重要包括以下几个部分:1.对目标系统的编译器gcc2.对目标系统的二进制工具binutils3.目标系统的标准c库glibc4.目标系统的linux内核头文件交叉编译环境的建立步骤一、下载源代码 下载包括binutils、gcc、glibc及linux内核的源代码(需要注意的是,glibc和内核源代码的版本必须与目标机上实际使用的版本保持一致),并设定shell变量PREFIX指定可执行程序的安装路径。二、编译binutils 首先运行configure文件,并使用--prefix=$PREFIX参数指定安装路径,使用--target=arm-linux参数指定目标机类型,然后执行make install。三、配置linux内核头文件首先执行make mrproper进行清理工作,然后执行make config ARCH=arm(或make menuconfig/xconfig ARCH=arm)进行配置(注意,一定要在命令行中使用ARCH=arm指定cpu架构,因为缺省架构为主机的cpu架构),这一步需要根据目标机的实际情况进行详细的配置,笔者进行的实验中目标机为HP的ipaq-hp3630 PDA,因而设置system type为SA11X0,SA11X0 Implementations中选择Compaq iPAQ H3600/H3700。配置完成之后,需要将内核头文件拷贝到安装目录: cp -dR include/asm-arm $PREFIX/arm-linux/include/asm cp -dR include/linux $PREFIX/arm-linux/include/linux四、第一次编译gcc首先运行configure文件,使用--prefix=$PREFIX参数指定安装路径,使用--target=arm-linux参数指定目标机类型,并使用--disable-threads、--disable-shared、--enable-languages=c参数,然后执行make install。这一步将生成一个最简的gcc。由于编译整个gcc是需要目标机的glibc库的,它现在还不存在,因此需要首先生成一个最简的gcc,它只需要具备编译目标机glibc库的能力即可。五、交叉编译glibc这一步骤生成的代码是针对目标机cpu的,因此它属于一个交叉编译过程。该过程要用到linux内核头文件,默认路径为$PREFIX/arm-linux/sys-linux,因而需要在$PREFIX/arm-linux中建立一个名为sys-linux的软连接,使其内核头文件所在的include目录;或者,也可以在接下来要执行的configure命令中使用--with-headers参数指定linux内核头文件的实际路径。configure的运行参数设置如下(因为是交叉编译,所以要将编译器变量CC设为arm-linux-gcc): CC=arm-linux-gcc ./configure --prefix=$PREFIX/arm-linux --host=arm-linux --enable-add-ons 最后,按以上配置执行configure和make install,glibc的交叉编译过程就算完成了,这里需要指出的是,glibc的安装路径设置为$PREFIXARCH=arm/arm-linux,如果此处设置不当,第二次编译gcc时可能找不到glibc的头文件和库。六、第二次编译gcc运行configure,参数设置为--prefix=$PREFIX --target=arm-linux --enable-languages=c,c++。运行make install。到此为止整个交叉编译环境就完全生成了。几点注意事项第一点、在第一次编译gcc的时候可能会出现找不到stdio.h的错误,解决办法是修改gcc/config/arm/t-linux文件,在TARGET_LIBGCC2_CFLAGS变量的设定中增加-Dinhibit_libc和-D__gthr_posix_h。我们知道hostid作为一台主机的唯一标示符(hostname本身可能重复),而许多付费软件通过鉴别hostid发给相关的license.hostname的修改较为简单,只需要修改/etc/sysconfig/network中的hostname并重启即可。hostid的修改就不那么方便了,下面介绍一种方法:编辑一个c文件,是的之后你还需要修改它,就叫做host.c吧!#include <stdio.h>#include <unistd.h>
int main() {
long id,res
// get real (default) hostid
id = gethostid()
printf("current hostid is: %x
",id)
// set new hostid if is superuser
res = sethostid(0xa090d01)//括号内填入你想要的hostid if (res == 0) printf("if result is zero - success! (%d)
",res)
printf("current hostid is: %x -PPPppppp
",id)}之后我们需要编译它[root@pmsora ~]# cc host.c[root@pmsora ~]# ./a.out //编译后运行 current hostid is: a090d01 ifresult is zero - success! (0) current hostid is: a090d01 -PPPppppp [root@pmsora ~]# hostid 0a090d01 //hostid正确修改了 注意运行编译好的目标文件时必须使用root用户。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)