如何在Linux服务器中实现数据实时同步及备份

如何在Linux服务器中实现数据实时同步及备份,第1张

科技时代,任何行业都离不开数据的分析以及统筹,如果掌握了最关键的数据及技术,那成功就指日可待,所以数据对于一个企业来说,就是最无形的财富,而一个企业的数据基本都有服务器保存及管理着,如何保证数据安全,实现数据同步及备份?诚恺科技小编就同大家一起来看看在Linux服务器中利用rsync配合inotify实现数据实时同步及备份的方法。

rsync:可以镜像保存整个目录树和文件系统。可以很容易做到保持原来文件的权限、时间、软硬链接等等。第一次同步时 rsync 会复制全部内容,但在下一次只传输修改过的文件。

方案:起初用rsync进行数据备份是利用计划任务,定时执行一下命令实现rsync的同步,但最近开发这边修改比较频繁,看来需要实时同步备份来完善备份机制!所以需要利用inotify触发器来改善!达到一旦指定的位置有了新的变动就将其同步!

环境:

CentOS 6.4 64位

rsync-3.0.9

inotify-tools-3.14

说明:

10.10.1.6 (rsync+inotify)----------网站程序(/data0/htdocs/)

10.10.1.9 (rsync)------------------网站程序备份(/data0/htdocs/)

目的:

实现10.10.1.6的/data0/htdocs/目录下发生任何变动都将实时同步到10.10.1.9的/data0/htdocs/上(另,这两台都跑有keepalived+nginx,来实现出现故障自动切换的容灾,详细配置会在后面补上)

一、web服务器10.10.1.6 (rsync+inotify)

1、准备软件包

2、安装Rsync

1)、1234 tar-zxvf rsync-3.0.9.tar.gz

2)、cdrsync-3.0.9

3)、./configure--prefix=/usr/local/rsync

4)、makemakeinstall

建立密码认证文件

[root@ftp ~]# echo "111111">/etc/rsyncd/rsyncd.secrets建立密码认证文件

*其中111111可以自己设置密码,rsyncd.secrets名字也可以自己设置;

权限:要将/etc/rsyncd/rsyncd.secrets设置为root拥有, 且权限为600。

# chmod 600 /etc/rsyncd/rsyncd.secrets

3、安装inotify

1)、1234 tar-zxvf inotify-tools-3.14.tar.gz

2)、cdinotify-tools-3.14

3)、./configure--prefix=/usr/local/inotify

4)、makemakeinstall

4、创建rsync复制脚本

此项功能主要是将ftp端的目录/data0/htdocs/里的内容,如果修改了(无论是添加、修改、删除文件)能够通过inotify监控到,并通过rsync实时的同步给10.10.1.9的/data0/htdocs里,下面是通过shell脚本实现的。

[root@web ~]# vim /root/shell/rsync.sh

[root@web ~]# chmod u+x /root/shell/rsync.sh

[root@web ~]# setsid /root/shell/rsync.sh &

#后台运行脚本,关闭shell终端继续后台运行

rsync.sh脚本加入开机启动项

# echo "/root/shell/rsync.sh" >>/etc/rc.local

防火墙开启rsync端口:873

添加:

iptables -A INPUT -m state --state NEW -m tcp -p tcp --dport 873 -jACCEPT

重启:

# /etc/init.d/iptables restart

二、备份服务器10.10.1.9(rsync)

1、准备工作

创建备份目录:

# mkdir /data0/htdocs

2、安装rsync(备份主机只安装rsync)

1)、1234 tar-zxvf rsync-3.0.9.tar.gz

2)、cdrsync-3.0.9

3)、./configure--prefix=/usr/local/rsync

4)、makemakeinstall

3、建立用户与密码认证文件

[root@backup ~]# echo "root:111111" >/etc/ rsyncd/rsyncd.secrets

[root@backup ~]# less /etc/rsyncd/rsyncd.secrets

root:111111

注意:

请记住,在10.10.1.6端建立的密码文件,只有密码,没有用户名;而在10.10.1.9里建立的密码文件,用户名与密码都有。

权限:要将/etc/rsyncd/rsyncd.secrets设置为root拥有, 且权限为600。

#chmod 600 /etc/rsyncd/rsyncd.secrets

4、建立rsync配置文件

[root@backup ~]# vim /etc/rsyncd/rsyncd.conf

启动rsync服务

# /usr/local/rsync/bin/rsync --daemon --config=/etc/rsyncd.conf

# ps -ef |grep rsync

Rsync服务加入开机启动项

# echo "/usr/local/rsync/bin/rsync --daemon --config=/etc/rsyncd.conf" >>/etc/rc.local

防火墙开启rsync端口:873

添加:

iptables -A INPUT -m state --state NEW -m tcp -p tcp --dport 873 -jACCEPT

重启:

# /etc/init.d/iptables restart

完成,其实这个时候数据已经同步了!

测试一下:

由于/data0/htdocs/下涉及到一些公司信息,所以就以/data0/htdocs/tmp/为例

主机名可以区别是两台机器,里面的内容完全一直,连文件的属性都一样

再对里面修改一下试试,创建一个文件,然后删除user目录试试

说说我以前最常用的三种批量部署方案(有疑问接受私信):

第一:服务器一般都会用两块磁盘做RAID1作为系统盘,手动安装完第一台 *** 作系统,RAID1的功能是两块盘中具有相等的数据,所以两块盘都存在了刚刚安装好的linux系统,拔出一块系统盘(服务器认为你这块盘坏了),再插入一块新盘到刚刚拔出磁盘的位置,此时服务器会再次向新磁盘自动同步数据,保持1:1备份。接下来刚刚拔出的那块系统盘派上用场,把刚刚扒出来的那块有系统的盘插到另外一台无系统的服务器上,自动完成与另外一块盘的同步,以此类推,1生2,2生4,4生8,8生16,16生32

第二种:刻录无人值守光盘

第三种:PXE批量部署

PXE实例:

我3年前做过一套PXE部署系统(以下是当时用于机房部署系统的截图界面)。可以部署windows+linux的各个版本,部署服务器采用的windows系统(因为windows能通过easybcd制作syslinux引导),syslinux就可以成功引导起win和linux,引导成功后,调用kickstart制作的linux无人应答文件,wds &AKT制作的windows无人应答文件,完成系统安装。你的需求只需要安装统一的linux版本,所以相对来说比较容易,花两天学习下kickstart基本就能在虚拟机上实践成功,但是如果要应用到物理服务器,还需要考虑驱动,raid,格式化等问题

解决办法当然是PXE+Kickstart了,学会一次就能一直用很方便。

你需要准备:

1、交换机,用于连接Server和客户机(必须临时关闭DHCP)

2、部署用server主机(由此台主机接管DHCP服务)

3、其他一堆客户机(需要调节至PXE引导模式)

然后按照教程

https://andyx.net/pxe_kickstart_automatic_deployment_of_linux_system/对Server

主机进行部署PXE+Kickstart,完成之后客户端开机即可自动安装。

没有部署同时过100多台,但是曾经部署26台ECS集群,支撑1500左右tps。部署的方案是:阿里云ECS+镜像+d性伸缩+负载均衡。开发测试环境用的是Vagrant直接控制多台虚拟机,曾经也使用过VMware ESXi和VMware VCenter管理虚拟机集群

腾讯有个蓝鲸平台,只需要录入你的服务器ip就可以批量 *** 作。

还有一个ansible的来源运维工具。

还可以通过pexpect脚本,自己用python结合ssh搭建一个运维平台。

如果是批量买机器的话,各个云厂商都提供有接口,写个简单都shell就可以了。

阿里云前天刚发布的,叫什么servicefee,忘了,可视化部署,一键拉起,可设置拉起顺序,定时d性容灾,服务之间的调用可视化,其他数据也是可监控

会 python 和 shell 可以搞搞 fabric ,我在用,还不错!

看你部署应用还是系统,平台是什么。

系统简单,做个模板机,复制就行了。

应用也不麻烦,跟上边的一样做个镜像就行,或者用批量管理工具ansible salt 这类的工具。云服务器的话,镜像市场也有公用的。

ansible,puppet和chef是常用的自动化运维工具。你说的需求用这三个都能做

1.部署 *** 作系统,制作系统模板,批量创建或调用api接口即可

2.部署应用软件,可使用自动化工具如ansible或者编写脚本来批量部署

linux有类似ghost那样的克隆工具,推荐clonezilla。ghost for Linux也可以。

另外,Linux下的dd命令可以完成一个源驱动器对目标驱动器的镜像 *** 作。

Linux内核设计与实现 十、内核同步方法

手把手教Linux驱动5-自旋锁、信号量、互斥体概述

== 基础概念: ==

并发 :多个执行单元同时进行或多个执行单元微观串行执行,宏观并行执行

竞态 :并发的执行单元对共享资源(硬件资源和软件上的全局变量)的访问而导致的竟态状态。

临界资源 :多个进程访问的资源

临界区 :多个进程访问的代码段

== 并发场合: ==

1、单CPU之间进程间的并发 :时间片轮转,调度进程。 A进程访问打印机,时间片用完,OS调度B进程访问打印机。

2、单cpu上进程和中断之间并发 :CPU必须停止当前进程的执行中断

3、多cpu之间

4、单CPU上中断之间的并发

== 使用偏向: ==

==信号量用于进程之间的同步,进程在信号量保护的临界区代码里面是可以睡眠的(需要进行进程调度),这是与自旋锁最大的区别。==

信号量又称为信号灯,它是用来协调不同进程间的数据对象的,而最主要的应用是共享内存方式的进程间通信。本质上,信号量是一个计数器,它用来记录对某个资源(如共享内存)的存取状况。它负责协调各个进程,以保证他们能够正确、合理的使用公共资源。它和spin lock最大的不同之处就是:无法获取信号量的进程可以睡眠,因此会导致系统调度。

1、==用于进程与进程之间的同步==

2、==允许多个进程进入临界区代码执行,临界区代码允许睡眠;==

3、信号量本质是==基于调度器的==,在UP和SMP下没有区别;进程获取不到信号量将陷入休眠,并让出CPU;

4、不支持进程和中断之间的同步

5、==进程调度也是会消耗系统资源的,如果一个int型共享变量就需要使用信号量,将极大的浪费系统资源==

6、信号量可以用于多个线程,用于资源的计数(有多种状态)

==信号量加锁以及解锁过程:==

sema_init(&sp->dead_sem, 0)/ 初始化 /

down(&sema)

临界区代码

up(&sema)

==信号量定义:==

==信号量初始化:==

==dowm函数实现:==

==up函数实现:==

信号量一般可以用来标记可用资源的个数。

举2个生活中的例子:

==dowm函数实现原理解析:==

(1)down

判断sem->count是否 >0,大于0则说明系统资源够用,分配一个给该进程,否则进入__down(sem)

(2)__down

调用__down_common(sem, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT)其中TASK_UNINTERRUPTIBLE=2代表进入睡眠,且不可以打断;MAX_SCHEDULE_TIMEOUT休眠最长LONG_MAX时间;

(3)list_add_tail(&waiter.list, &sem->wait_list)

把当前进程加入到sem->wait_list中;

(3)先解锁后加锁

进入__down_common前已经加锁了,先把解锁,调用schedule_timeout(timeout),当waiter.up=1后跳出for循环;退出函数之前再加锁;

Linux内核ARM构架中原子变量的底层实现研究

rk3288 原子 *** 作和原子位 *** 作

原子变量适用于只共享一个int型变量;

1、原子 *** 作是指不被打断的 *** 作,即它是最小的执行单位。

2、最简单的原子 *** 作就是一条条的汇编指令(不包括一些伪指令,伪指令会被汇编器解释成多条汇编指令)

==常见函数:==

==以atomic_inc为例介绍实现过程==

在Linux内核文件archarmincludeasmatomic.h中。 执行atomic_read、atomic_set这些 *** 作都只需要一条汇编指令,所以它们本身就是不可打断的。 需要特别研究的是atomic_inc、atomic_dec这类读出、修改、写回的函数。

所以atomic_add的原型是下面这个宏:

atomic_add等效于:

result(%0) tmp(%1) (v->counter)(%2) (&v->counter)(%3) i(%4)

注意:根据内联汇编的语法,result、tmp、&v->counter对应的数据都放在了寄存器中 *** 作。如果出现上下文切换,切换机制会做寄存器上下文保护。

(1)ldrex %0, [%3]

意思是将&v->counter指向的数据放入result中,并且(分别在Local monitor和Global monitor中)设置独占标志。

(2)add %0, %0, %4

result = result + i

(3)strex %1, %0, [%3]

意思是将result保存到&v->counter指向的内存中, 此时 Exclusive monitors会发挥作用,将保存是否成功的标志放入tmp中。

(4) teq %1, #0

测试strex是否成功(tmp == 0 ??)

(5)bne 1b

如果发现strex失败,从(1)再次执行。

Spinlock 是内核中提供的一种比较常见的锁机制,==自旋锁是“原地等待”的方式解决资源冲突的==,即,一个线程获取了一个自旋锁后,另外一个线程期望获取该自旋锁,获取不到,只能够原地“打转”(忙等待)。由于自旋锁的这个忙等待的特性,注定了它使用场景上的限制 —— 自旋锁不应该被长时间的持有(消耗 CPU 资源),一般应用在==中断上下文==。

1、spinlock是一种死等机制

2、信号量可以允许多个执行单元进入,spinlock不行,一次只能允许一个执行单元获取锁,并且进入临界区,其他执行单元都是在门口不断的死等

3、由于不休眠,因此spinlock可以应用在中断上下文中;

4、由于spinlock死等的特性,因此临界区执行代码尽可能的短;

==spinlock加锁以及解锁过程:==

spin_lock(&devices_lock)

临界区代码

spin_unlock(&devices_lock)

==spinlock初始化==

==进程和进程之间同步==

==本地软中断之间同步==

==本地硬中断之间同步==

==本地硬中断之间同步并且保存本地中断状态==

==尝试获取锁==

== arch_spinlock_t结构体定义如下: ==

== arch_spin_lock的实现如下: ==

lockval(%0) newval(%1) tmp(%2) &lock->slock(%3) 1 <<TICKET_SHIFT(%4)

(1)ldrex %0, [%3]

把lock->slock的值赋值给lockval;并且(分别在Local monitor和Global monitor中)设置独占标志。

(2)add %1, %0, %4

newval =lockval +(1<<16)相当于next+1;

(3)strex %2, %1, [%3]

newval =lockval +(1<<16)相当于next+1;

意思是将newval保存到 &lock->slock指向的内存中, 此时 Exclusive monitors会发挥作用,将保存是否成功的标志放入tmp中。

(4) teq %2, #0

测试strex是否成功

(5)bne 1b

如果发现strex失败,从(1)再次执行。

通过上面的分析,可知关键在于strex的 *** 作是否成功的判断上。而这个就归功于ARM的Exclusive monitors和ldrex/strex指令的机制。

(6)while (lockval.tickets.next != lockval.tickets.owner)

如何lockval.tickets的next和owner是否相等。相同则跳出while循环,否则在循环内等待判断;

* (7)wfe()和smp_mb() 最终调用#define barrier() asm volatile ("": : :"memory") *

阻止编译器重排,保证编译程序时在优化屏障之前的指令不会在优化屏障之后执行。

== arch_spin_unlock的实现如下: ==

退出锁时:tickets.owner++

== 出现死锁的情况: ==

1、拥有自旋锁的进程A在内核态阻塞了,内核调度B进程,碰巧B进程也要获得自旋锁,此时B只能自旋转。 而此时抢占已经关闭,(单核)不会调度A进程了,B永远自旋,产生死锁。

2、进程A拥有自旋锁,中断到来,CPU执行中断函数,中断处理函数,中断处理函数需要获得自旋锁,访问共享资源,此时无法获得锁,只能自旋,产生死锁。

== 如何避免死锁: ==

1、如果中断处理函数中也要获得自旋锁,那么驱动程序需要在拥有自旋锁时禁止中断;

2、自旋锁必须在可能的最短时间内拥有

3、避免某个获得锁的函数调用其他同样试图获取这个锁的函数,否则代码就会死锁;不论是信号量还是自旋锁,都不允许锁拥有者第二次获得这个锁,如果试图这么做,系统将挂起;

4、锁的顺序规则(a) 按同样的顺序获得锁;b) 如果必须获得一个局部锁和一个属于内核更中心位置的锁,则应该首先获取自己的局部锁 c) 如果我们拥有信号量和自旋锁的组合,则必须首先获得信号量;在拥有自旋锁时调用down(可导致休眠)是个严重的错误的;)

== rw(read/write)spinlock: ==

加锁逻辑:

1、假设临界区内没有任何的thread,这个时候任何的读线程和写线程都可以键入

2、假设临界区内有一个读线程,这时候信赖的read线程可以任意进入,但是写线程不能进入;

3、假设临界区有一个写线程,这时候任何的读、写线程都不可以进入;

4、假设临界区内有一个或者多个读线程,写线程不可以进入临界区,但是写线程也无法阻止后续的读线程继续进去,要等到临界区所有的读线程都结束了,才可以进入,可见:==rw(read/write)spinlock更加有利于读线程;==

== seqlock(顺序锁): ==

加锁逻辑:

1、假设临界区内没有任何的thread,这个时候任何的读线程和写线程都可以键入

2、假设临界区内没有写线程的情况下,read线程可以任意进入;

3、假设临界区有一个写线程,这时候任何的读、写线程都不可以进入;

4、假设临界区内只有read线程的情况下,写线程可以理解执行,不会等待,可见:==seqlock(顺序锁)更加有利于写线程;==

读写速度 CPU >一级缓存 >二级缓存 >内存 ,因此某一个CPU0的lock修改了,其他的CPU的lock就会失效;那么其他CPU就会依次去L1 L2和主存中读取lock值,一旦其他CPU去读取了主存,就存在系统性能降低的风险;

mutex用于互斥 *** 作。

互斥体只能用于一个线程,资源只有两种状态(占用或者空闲)

1、mutex的语义相对于信号量要简单轻便一些,在锁争用激烈的测试场景下,mutex比信号量执行速度更快,可扩展

性更好,

2、另外mutex数据结构的定义比信号量小、

3、同一时刻只有一个线程可以持有mutex

4、不允许递归地加锁和解锁

5、当进程持有mutex时,进程不可以退出。

• mutex必须使用官方API来初始化。

• mutex可以睡眠,所以不允许在中断处理程序或者中断下半部中使用,例如tasklet、定时器等

==常见 *** 作:==

struct mutex mutex_1

mutex_init(&mutex_1)

mutex_lock(&mutex_1)

临界区代码;

mutex_unlock(&mutex_1)

==常见函数:==

=


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/7636043.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-08
下一篇 2023-04-08

发表评论

登录后才能评论

评论列表(0条)

保存