net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)
其中:PR —— R维输入元素的R×2阶最大最小值矩阵; Si —— 第i层神经元的个数,共N1层; TFi——第i层的转移函数,默认‘tansig’; BTF—— BP网络的训练函数,默认‘trainlm’ BLF—— BP权值/偏差学习函数,默认’learngdm’ PF ——性能函数,默认‘mse’;(误差)
e.g.
P = [0 1 2 3 4 5 6 7 8 9 10]T = [0 1 2 3 4 3 2 1 2 3 4]
net = newff([0 10],[5 1],{'tansig' 'purelin'})net.trainparam.show=50 %每次循环50次net.trainParam.epochs = 500 %最大循环500次
net.trainparam.goal=0.01 %期望目标误差最小值
net = train(net,P,T) %对网络进行反复训练
Y = sim(net,P)Figure % 打开另外一个图形窗口
plot(P,T,P,Y,'o')
从原理上来说,神经网络是可以预测未来的点的。实际上,经过训练之后,神经网络就拟合了输入和输出数据之间的函数关系。只要训练的足够好,那么这个拟合的关系就会足够准确,从而能够预测在其他的输入情况下,会有什么样的输出。
如果要预测t=[6
7]两点的R值,先以t=[1
2
3
4
5]作为输入,R=[12
13
14
14
15]作为输出,训练网络。训练完成之后,用t=[2
3
4
5
6]作为输入,这样会得到一个输出。不出意外的话,输出的数组应该是[13
14
14
15
X],这里的X就是预测t=6时的R值。然后以t=[3
4
5
6
7]作为输入,同理得到t=7时候的R值。
根据我的神经网络预测,t=6时,R=15,t=7时,R=15。我不知道这个结果是否正确,因为神经网络通常需要大量的数据来训练,而这里给的数据似乎太少,可能不足以拟合出正确的函数。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)