在100-2000的范围就是对应平移之后的t。平移曲线在数学上的定义就是移横轴。
t=0:0.0001:0.1
y=sin(2*pi*30*t)
figure
plot(t,y)
hold on
plot(t-0.05,y,'r')
legend('平移前','平移后')
%such as:
%画出y=x^2的图像
x=-1:0.01:1
y=x.^2
plot(x,y)
hold on
%向上平移一个单位;
y1=x.^2+ones(size(x))
plot(x,y1)
grid on
函数图形中平移作用
一、通过简单的平移可以构造精美的图形。也就是花边,通常用于装饰,过程就是复制-平移-粘贴。
二、平移常与平行线有关,平移可以将一个角,一条线段,一个图形平移到另一个位置,是分散的条件集中到一个图形上,使问题得到解决。
三、把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
四、新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。连接各组对应点的线段平行且相等(或在同一直线上)。
好像挺简单的啊A=imread('图片名字,jpg') 得到一个矩阵A
B=255*ones(size(A))(灰度255代表白色)
C=[B(:,1:h),A] h代表平移的长度
imshow(C) 就好了
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)