数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数据分析师必须学会借助技术。
程序员(英文Programmer)是从事程序开发、程序维护的基层工作人员。一般将程序员分为程序设计人员和程序编码人员,但两者的界限并不非常清楚。通过国家统一组织的考试,资格考试分为:程序员级(原初级程序员)、软件设计师(原高级程序员)以及更高水准的:信息系统项目管理师、系统分析师(原系统分析员)、系统架构设计师、网络规划设计师、系统规划与管理师。
关于数据分析师和程序员的区别的信息可以到CDA认证中心去了解一下,CDA认证,致力于打造全球数据人才考核行业标准,推动全球数人才发展。包括开发和整合国际数据科学领域的前沿技术及优质资源; 制定并完善数据科学行业人才标准与职业道德行为准则;编写和建立专业教材体系与题库;组织并实施命题审题、人才评定和考试服务;管理会员与提供行业咨询服务等事务。
数据分析师编写的代码以数据分析和呈现为主要任务,目的是给人看的,而程序员写的代码主要以实现系统功能为主,目的是给人用的。
数据分析师编写的代码包括算法设计、算法实现、算法验证、算法应用几个关键步骤,关键在于发掘数据背后的价值(规律),数据分析往往与场景的结合比较紧密。数据分析师通常并不需要考虑程序的性能、安全性、分布式架构等系统级问题,所以往往数据分析师选择的编程语言都非常实用,包括Python、R等语言,看两个Python实现的例子:
程序员编写的代码主要是给用户使用的,需要考虑的内容就比较多了,比如程序的稳定性、简洁性(友好)、速度、并发、资源管理、权限管理等等内容,这里面既包括逻辑性问题又包括系统级问题。程序员往往分为应用级程序员和研发级程序员,研发级程序员解决系统级问题(容器开发),而应用级程序员往往解决功能实现的问题,可以说程序开发是一个非常系统化的流程,每个环节还要有严格的测试。看一下ZookeeperSession的流程图:
数据分析师在完成数据分析任务之后,如果需要把这部分数据分析功能进行产品化封装,通常情况下就需要程序员来做相关的工作。举个例子来说,数据分析师往往采用Python来做数据分析的算法实现,但是程序员在进行功能封装的时候,往往会采用Java等语言对其代码进行重写以满足系统对性能的要求。
有的研发团队会设置专门的算法设计岗位和算法实现岗位,算法设计专注于算法本身,而算法实现则专注于算法的程序化实现。但是现在很多团队的算法设计师即要做算法设计也要做算法实现,所以现在的算法设计师往往也要懂得编程。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)