1、matlab是一个功能强大的软件,不仅仅在数据处理方面很优秀,在界面编程方面同样优秀,这里简单介绍下matlab界面编程的基础步骤。
2、在打开的matlab程序中,点击new---graphic user interface,打开创建gui向导--我们选择blank gui,创建空白的gui界面---选择左侧我们需要的控件,如下图,我们选择一个button---将控件拖入到gui界面的合适的位置,双击打开设置属性的界面---设计好界面后,我们先不要编写函数内容,先运行界面---他会提醒我们激活界面将保存界面和代码,我们选择yes---输入文件名,点击保存---我们回到界面编辑界面,点击button右键打开右键菜单,点击view callbacks---callback,来跳转到该控件的回调函数---我们在该函数中输入代码---这时,我们运行程序,点击按钮,即可以在命令窗口中看到button执行的效果。
3、先运行界面,使得matlab给我们创建界面的代码,然后在view callback。
美国Michigan 大学的 Holland 教授提出的遗传算法(GeneticAlgorithm, GA)是求解复杂的组合优化问题的有效方法 ,其思想来自于达尔文进化论和门德尔松遗传学说 ,它模拟生物进化过程来从庞大的搜索空间中筛选出较优秀的解,是一种高效而且具有强鲁棒性方法。所以,遗传算法在求解TSP和 MTSP问题中得到了广泛的应用。
matlab程序如下:
function[opt_rte,opt_brk,min_dist] =mtspf_ga(xy,dmat,salesmen,min_tour,pop_size,num_iter)
%%
%实例
% n = 20%城市个数
% xy = 10*rand(n,2)%城市坐标 随机产生,也可以自己设定
% salesmen = 5%旅行商个数
% min_tour = 3%每个旅行商最少访问的城市数
% pop_size = 80%种群个数
% num_iter = 200%迭代次数
% a = meshgrid(1:n)
% dmat =reshape(sqrt(sum((xy(a,:)-xy(a',:)).^2,2)),n,n)
% [opt_rte,opt_brk,min_dist] = mtspf_ga(xy,dmat,salesmen,min_tour,...
% pop_size,num_iter)%函数
%%
[N,dims]= size(xy)%城市矩阵大小
[nr,nc]= size(dmat)%城市距离矩阵大小
n = N -1% 除去起始的城市后剩余的城市的数
% 初始化路线、断点的选择
num_brks= salesmen-1
dof = n- min_tour*salesmen %初始化路线、断点的选择
addto =ones(1,dof+1)
for k =2:num_brks
addto = cumsum(addto)
end
cum_prob= cumsum(addto)/sum(addto)
%% 初始化种群
pop_rte= zeros(pop_size,n) % 种群路径
pop_brk= zeros(pop_size,num_brks) % 断点集合的种群
for k =1:pop_size
pop_rte(k,:) = randperm(n)+1
pop_brk(k,:) = randbreaks()
end
% 画图路径曲线颜色
clr =[1 0 00 0 10.67 0 10 1 01 0.5 0]
ifsalesmen >5
clr = hsv(salesmen)
end
%%
% 基于遗传算法的MTSP
global_min= Inf %初始化最短路径
total_dist= zeros(1,pop_size)
dist_history= zeros(1,num_iter)
tmp_pop_rte= zeros(8,n)%当前的路径设置
tmp_pop_brk= zeros(8,num_brks)%当前的断点设置
new_pop_rte= zeros(pop_size,n)%更新的路径设置
new_pop_brk= zeros(pop_size,num_brks)%更新的断点设置
foriter = 1:num_iter
% 计算适应值
for p = 1:pop_size
d = 0
p_rte = pop_rte(p,:)
p_brk = pop_brk(p,:)
rng = [[1 p_brk+1][p_brk n]]'
for s = 1:salesmen
d = d + dmat(1,p_rte(rng(s,1)))% 添加开始的路径
for k = rng(s,1):rng(s,2)-1
d = d + dmat(p_rte(k),p_rte(k+1))
end
d = d + dmat(p_rte(rng(s,2)),1)% 添加结束的的路径
end
total_dist(p) = d
end
% 找到种群中最优路径
[min_dist,index] = min(total_dist)
dist_history(iter) = min_dist
if min_dist <global_min
global_min = min_dist
opt_rte = pop_rte(index,:)%最优的最短路径
opt_brk = pop_brk(index,:)%最优的断点设置
rng = [[1 opt_brk+1][opt_brk n]]'%设置记录断点的方法
figure(1)
for s = 1:salesmen
rte = [1 opt_rte(rng(s,1):rng(s,2))1]
plot(xy(rte,1),xy(rte,2),'.-','Color',clr(s,:))
title(sprintf('城市数目为 = %d,旅行商数目为 = %d,总路程 = %1.4f, 迭代次数 =%d',n+1,salesmen,min_dist,iter))
hold on
grid on
end
plot(xy(1,1),xy(1,2),'ko')
hold off
end
% 遗传 *** 作
rand_grouping = randperm(pop_size)
for p = 8:8:pop_size
rtes = pop_rte(rand_grouping(p-7:p),:)
brks = pop_brk(rand_grouping(p-7:p),:)
dists =total_dist(rand_grouping(p-7:p))
[ignore,idx] = min(dists)
best_of_8_rte = rtes(idx,:)
best_of_8_brk = brks(idx,:)
rte_ins_pts = sort(ceil(n*rand(1,2)))
I = rte_ins_pts(1)
J = rte_ins_pts(2)
for k = 1:8 %产生新种群
tmp_pop_rte(k,:) = best_of_8_rte
tmp_pop_brk(k,:) = best_of_8_brk
switch k
case 2% 倒置 *** 作
tmp_pop_rte(k,I:J) =fliplr(tmp_pop_rte(k,I:J))
case 3 % 互换 *** 作
tmp_pop_rte(k,[I J]) =tmp_pop_rte(k,[J I])
case 4 % 滑动平移 *** 作
tmp_pop_rte(k,I:J) =tmp_pop_rte(k,[I+1:J I])
case 5% 更新断点
tmp_pop_brk(k,:) = randbreaks()
case 6 % 倒置并更新断点
tmp_pop_rte(k,I:J) =fliplr(tmp_pop_rte(k,I:J))
tmp_pop_brk(k,:) =randbreaks()
case 7 % 互换并更新断点
tmp_pop_rte(k,[I J]) =tmp_pop_rte(k,[J I])
tmp_pop_brk(k,:) =randbreaks()
case 8 % 评议并更新断点
tmp_pop_rte(k,I:J) =tmp_pop_rte(k,[I+1:J I])
tmp_pop_brk(k,:) =randbreaks()
otherwise
end
end
new_pop_rte(p-7:p,:) = tmp_pop_rte
new_pop_brk(p-7:p,:) = tmp_pop_brk
end
pop_rte = new_pop_rte
pop_brk = new_pop_brk
end
figure(2)
plot(dist_history,'b','LineWidth',2)
title('历史最优解')
xlabel('迭代次数')
ylabel('最优路程')
% 随机产生一套断点 的集合
function breaks = randbreaks()
if min_tour == 1 % 一个旅行商时,没有断点的设置
tmp_brks = randperm(n-1)
breaks =sort(tmp_brks(1:num_brks))
else % 强制断点至少找到最短的履行长度
num_adjust = find(rand <cum_prob,1)-1
spaces =ceil(num_brks*rand(1,num_adjust))
adjust = zeros(1,num_brks)
for kk = 1:num_brks
adjust(kk) = sum(spaces == kk)
end
breaks = min_tour*(1:num_brks) +cumsum(adjust)
end
end
disp('最优路径为:/n')
disp(opt_rte)
disp('其中断点为为:/n')
disp(opt_brk)
end
matlab程序为:
function jiechenghe=fun(x)
jiechenghe=0
s=1
for i=1:x
s=s*i
jiechenghe=jiechenghe+s
end
应用:求n!的位数
可以将n!表示成10的次幂,即n!=10^M(10的M次方)则不小于M的最小整数就是 n!的位数,对该式两边取对数,有 M =log10^n!
即:M = log10^1+log10^2+log10^3...+log10^n。循环求和,就能算得M值,该M是n!的精确位数。
扩展资料:
对于复数应该是指所有模n小于或等于│n│的同余数之积,对于任意实数n的规范表达式为:正数 n=m+x,m为其正数部,x为其小数部;负数n=-m-x,-m为其正数部,-x为其小数部。
在 Common Lisp 中, 可以很方便的使用更为简洁的使用递归实现阶乘:
(defun factorial (n)
(cond
((> n 0) (* (factorial (- n 1)) n))
((= n 0) 1)
(t (error "N is smaller than 0."))))
参考资料来源:百度百科-n!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)