传输分集就是传一样的东西(可能形式上不一样)
LTE系统里空间复用基于多码字的同时传输,即多个相互独立的数据流通过映射到不同的层,再由不同的天线发送出去。码字数量与天线数量未必一致。(当然天线数量>=码字数量)。
传输分集主要用于提高信号传输的可靠性,例如采用空时编码(STC)、循环延时分集(CDD)及天线切换分集等。LTE中用的比较多的是SFBC编码
分集和复用可以看做对资源的利用方式。复用就是将资源(部分和全部MIMO信道)用于传输不同信息,而分集是指多个独立MIMO信道中发送相同信息的信道数,如4根发送天线如果都用来发送不同信息,复用度为4,这时就不会有分集。当把相同信息经过编码后(如简单的重复4次),经过不同的天线发送出去,则分集为4 ,复用为0.分集决定性能,复用决定了传输效率。在实际应用中,通常需要折中考虑,即在满足性能情况下尽量选用大的复用度。
空间分集是多个天线发送相同的数据,目的抗衰落
空间复用是多个天线发送不同的数据,目的提高信道容量
空间复用是为了提高传输数据数量;
传输分级是为了提高传输数据质量;
LTE的MIMO模式协议中共定义了7种:
1.单天线端口,端口0;
2.发射分集;
3.开环空间复用;
4.闭环空间复用;
5.多用户MIMO(MU-MIMO);
6.闭环RANK=1预编码;
7.单天线端口,端口=5.共7种。
分类的话可分为三大类:发射分集(1,2),空间复用(3,4,5)和波束赋形 (BF)(6,7)。空间复用基于多码字的同时传输,即多个相互独立的数据流通过映射到不同的层,再由不同的天线发送出去。码字数量与天线数量未必一致。(当然天线数量>=码字数量)。传输分集主要用于提高信号传输的可靠性,例如采用空时编码(STC)、循环延时分集(CDD)及天线切换分集等,LTE中用的比较多的是SFBC编码。也就是传输分集(2)用来提高信号传输的可靠性,主要是针对小区边缘用户,3,4主要是针对小区中央的用户,提高峰值速率。MU-MIMO是为了提高吞吐量,用于小区中的业务密集区。6,7是用于增强小区覆盖,也是用于边缘用户。不过6是针对FDD,7是针对 TDD而已。实际上6也可以归于4的一种特殊情况。
运载火箭的发射是有一定程序的,包括起飞、加速、入轨、箭器分离等。如果发射的是回收式航天器,最后还有回收程序。下面简单介绍一下各个程序:
起飞
火箭经过事先组装、调试以及某些试验后,便用运输系统(火车或汽车、拖车)将之运往发射场,竖立在发射架上,然后进行发射前的准备工作,如航天器的安装、所有管线的连接等。如果是液体推进剂火箭,还要加注推进剂,填充压缩空气和安装爆炸螺栓等火工品(航天器安装要先于火工品安装,以保障安全);然后进行全箭检查,火箭垂直度调整和方向粗瞄准;最后再进行方向精瞄准和临射检查;向火箭推进剂贮箱充气增压;启动发动机;火箭起飞,沿预定轨道飞行。当然,点火起飞是由电子计算机倒计时和一系列控制指令实现的。 加速和飞行
火箭起飞后,沿预定发射轨道飞行,发射轨道包括垂直起飞段、程序转弯段和入轨段。随着各级火箭的不断点火加速,火箭的速度逐步加快,每级火箭能获得约4千米/秒的速度。
入轨
各种运载火箭在前两段的工作程序基本相同,而在入轨阶段则有些差异,有直接入轨的,有滑行入轨的,有过渡转移入轨的。
直接入轨适于低轨道航天器,如地球资源探测卫星、侦察卫星和载人航天飞船等。在这种入轨方式下,火箭是连续工作,当最后一级火箭发动机关机时,航天器便进入预定轨道,此时箭体与航天器分离(整流罩先行分开)。在此前,各级火箭顺次点火,完成工作的那一级火箭便被及时抛掉。
而滑行入轨适于发射中、高轨道的航天器,如太阳同步气象卫星、导航卫星等。滑行入轨分三个阶段飞行:主动段(发动机点火工作段)、滑行段(发动机关机靠惯性飞行段)、加速段(发动机再次点火,适于液体推进剂火箭,固体火箭无法再次点火)。
过渡转移入轨适用于发射地球同步轨道航天器,如地球同步轨道通信卫星、气象卫星等。这种入轨方式十分复杂:第一级、第二级火箭连续工作,接着第三级火箭第一次点火,使卫星与第三级火箭同时进入小椭圆轨道(停泊轨道)绕地球飞行。当与赤道平面相交时,第三级火箭第二次点火工作,于是将卫星送入36000千米高的赤道上空,近地点为400千米的大椭圆轨道,称之为过渡轨道。当达到预定轨道后,箭星分离。至此,运载火箭完成了发射任务。 至于在轨道上的卫星的姿态调整、轨道参数测量及轨道微调,则是地面测控站的任务了。而星际探测器或无人飞船、载人飞船的太空飞行、登陆外星等则要受在地面宇航测控中心的监视和控制。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)