谁能给一个三菱PLC控制伺服电机的程序案例

谁能给一个三菱PLC控制伺服电机的程序案例,第1张

首先设置伺服电机驱动器的参数。

1.Pr02---控制模式选择,设定Pr02参数为0或是3或是4。3与4的区别在于当32(C-MODE)端子为短时,控制模式相应变为速度模式或是转矩模式,而设为0,则只为位置控制模式。如果您只要求位置控制的话,Pr02设定为0或是3或是4是一样的。

2.Pr10,Pr11,Pr12---增益与积分调整,在运行中根据伺服电机的运行情况相应调整.达到同服电机运行平稳。当然其他的参数也需要调整(Pr13,Pr14,Pr15,Pr16,Pr20也是很重要的多数),在您不太熟悉前只调整这三个参数也可以满足基本的要求.

3.Pr40---指令脉冲输入选择,默认为光耦输入(设为0)即可。也就是选择3(PULS1),4(PULS2),5(SIGN1),6(SIGN2)这四个端子输入脉冲与方向信号。

4.Pr41,Pr42---简单地说就是控制伺服电机运转方向。Pr41设为0时,Pr42设为3,则5(SIGN1),6(SIGN2)导通时为正方向(CCW),反之为反方向(CW)。Pr41设为1时,Pr42设为3,则5(SIGN1),

6.(SIGN2)断开时为正方向(CCW),反之为反方向(CW),正、反方向是相对的,看您如何定义了,正确的说法应该为ccw,CW

5.Pr48、Pr4A、Pr4B---电子齿轮比设定。此为重要参数,其作用就是控制电机的运转速度与控制器发送一个脉冲时电机的行走长度。

扩展资料:

伺服电机(servomotor)是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。

伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。

参考资料:伺服电机_百度百科

举例:西门子Sinamics S120在浮法玻璃流道闸板控制系统中的应用

1、系统简介:

现场采西门子S7-400H DCS系统,监测和控制整个生产线的运行。两套S120做为DCS系统的Profibus DP 从站,分别控制两套流道闸板。同时为了保证系统的可靠性,设置了本地、远程切换功能。在远程工作模式时,进行位置控制,由DCS通过Profibus DP通讯,发送目标位置值S120,控制流道闸板上升或下降。

2、硬件配置:

S120的控制单元选用CU310-2DP,功率单元选用PM340,配合西门子1FT7高性能电机。CU310-2 DP控制单元设计用于 SINAMICS S120(AC/AC)的通信及开环/闭环控制功能,它和功率模块PM340组合在一起,便构成了一个强大的单轴驱动器。

3、电气原理图

利用CU310-2DP自身集成的IO点,可以使流道闸板完全脱离DCS的控制,实现本地控制。同时CU310-2DP自身也集成了DP通讯接口,可以通过DCS实现流道闸板的远程控制。

4.系统调试:

利用S120基本定位功能中的MDI(手动设定值输入)功能,可以轻松地通过外部系统来实现复杂的定位功能。MDI有两种工作模式,速度模式和位置模式,可以通过参数P2653参数来在线切换这两种工作模式。P2653为0时,为速度模式;P2653为1时,为位置模式。速度模式是指轴按照设定的速度及加、减速运行,不考虑轴的实际位置。位置模式是指轴按照设定的位置、速度、加/减速运行。位置模式又可分为绝对位置(P2648=1)和相对位置(P2648=0)两种方式,在本项目中,当切换到DCS远程控制时,使用MDI的相对位置模式,当切换在本地控制时,使用MDI的速度模式。

5.需要注意:

S120的基本定位功能主要包括下面几个内容:

1、点动(Jog):用于手动方式移动轴,通过按钮使轴运行至目标点。

2、回零(Homing/Reference):用于定义轴的参考点或运行中回零。

3、限位(Limits):用于限制轴的速度、位置,包括软限位、硬限位。

4、程序步(Traversing Blocks): 共64个程序步,可自动连续执行一个完整的程序,也      可单步执行。

5、直接设定值输入/手动设定值输入(Direct Setpoint Input/MDI):目标位置及运行速      度可由上位机实时控制。

S120中回零有三种方式:

● 直接设定参考点(Set Reference): 对任意编码器均可。

● 主动回零(Reference point approach): 主要指增量编码器

● 动态回零(Flying Reference):对任意编码器均可。

更加详细的说明及过程分析可百度进官网查看。

松下PLC控制松下伺服 *** 作步骤?       下面就以松下PLC控制伺服电机应用实例来做说明,希望有一定帮助 松下FP1系列PLC和A4系列伺服驱动为例,编制控制伺服电机定长正、反旋转的PLC程序并设计外围接线图,此方案不采用松下的位置控制模块FPG--PP11\12\21\22等,而是用晶体管输出式的PLC,让其特定输出点给出位置指令脉冲串,直接发送到伺服输入端,此时松下A4伺服工作在位置模式。在PLC程序中设定伺服电机旋转速度,单位为(rpm),设伺服电机设定为1000个脉冲转一圈。PLC输出脉冲频率=(速度设定值/6)*100(HZ)。假设该伺服系统的驱动直线定位精度为±0.1mm,伺服电机每转一圈滚珠丝杠副移动10mm,伺服电机转一圈需要的脉冲数为1000,故该系统的脉冲当量或者说驱动分辨率为0.01mm(一个丝);PLC输出脉冲数=长度设定值*10。 以上的结论是在伺服电机参数设定完的基础上得出的。也就是说,在计算PLC发出脉冲频率与脉冲前,先根据机械条件,综合考虑精度与速度要求设定好伺服电机的电子齿轮比!大致过程如下: 机械机构确定后,伺服电机转动一圈的行走长度已经固定(如上面所说的10mm),设计要求的定位精度为0.1mm(10个丝)。为了保证此精度,一般情况下是让一个脉冲的行走长度低于0.1mm,如设定一个脉冲的行走长度为如上所述的0.01mm,于是电机转一圈所需要脉冲数即为1000个脉冲。此种设定当电机速度要求为1200转/分时,PLC应该发出的脉冲频率为20K。松下FP1---40T的PLC的CPU本体可以发脉冲频率为50KHz,完全可以满足要求。 如果电机转动一圈为100mm,设定一个脉冲行走仍然是0.01mm,电机转一圈所需要脉冲数即为10000个脉冲,电机速度为1200转时所需要脉冲频率就是200K。PLC的CPU输出点工作频率就不够了。需要位置控制专用模块等方式。 有了以上频率与脉冲数的算法就只需应用PLC的相应脉冲指令发出脉冲即可实现控制了。假设使用松下A4伺服,其工作在位置模式,伺服电机参数设置与接线方式如下: 一、按照伺服电机驱动器说明书上的“位置控制模式控制信号接线图”接线: pin3(PULS1),pin4(PULS2)为脉冲信号端子,PULS1连接直流电源正极(24V电源需串连2K左右的电阻),PULS2连接控制器(如PLC的输出端子)。 pin5(SIGN1),pin6(SIGN2)为控制方向信号端子,SIGN1连接直流电源正极(24V电源需串连2K左右的电阻),SIGN2连接控制器(如PLC的输出端子)。当此端子接收信号变化时,伺服电机的运转方向改变。实际运转方向由伺服电机驱动器的P41,P42这两个参数控制,pin7(com+)与外接24V直流电源的正极相连。pin29(SRV-0N),伺服使能信号,此端子与外接24V直流电源的负极相连,则伺服电机进入使能状态,通俗地讲就是伺服电机已经准备好,接收脉冲即可以运转。 上面所述的六根线连接完毕(电源、编码器、电机线当然不能忘),伺服电机即可根据控制器发出的脉冲与方向信号运转。其他的信号端子,如伺服报警、偏差计数清零、定位完成等可根据您的要求接入控制器构成更完善的控制系统。 二、设置伺服电机驱动器的参数。 1、Pr02----控制模式选择,设定Pr02参数为0或是3或是4。3与4的区别在于当32(C-MODE)端子为短路时,控制模式相应变为速度模式或是转矩模式,而设为0,则只为位置控制模式。如果您只要求位置控制的话,Pr02设定为0或是3或是4是一样的。 2、Pr10,Pr11,Pr12----增益与积分调整,在运行中根据伺服电机的运行情况相应调整,达到伺服电机运行平稳。当然其他的参数也需要调整(Pr13,Pr14,Pr15,Pr16,Pr20也是很重要的参数),在您不太熟悉前只调整这三个参数也可以满足基本的要求.。 3、Pr40----指令脉冲输入选择,默认为光耦输入(设为0)即可。也就是选择3(PULS1),4(PULS2),5(SIGN1),6(SIGN2)这四个端子输入脉冲与方向信号。 4、Pr41,Pr42----简单地说就是控制伺服电机运转方向。Pr41设为0时,Pr42设为3,则5(SIGN1),6(SIGN2)导通时为正方向(CCW),反之为反方向(CW)。Pr41设为1时,Pr42设为3,则5(SIGN1),6(SIGN2)断开时为正方向(CCW),反之为反方向(CW),正、反方向是相对的,看您如何定义了,正确的说法应该为CCW,CW。 5、Pr48、Pr4A、Pr4B----电子齿轮比设定。此为重要参数,其作用就是控制电机的运转速度与控制器发送一个脉冲时电机的行走长度。 其公式为: 伺服电机每转一圈所需的脉冲数=编码器分辨率×Pr4B/(Pr48×2^Pr4A) 伺服电机所配编码器如果为:2500p/r5线制增量式编码器,则编码器分辨率为10000p/r 如您连接伺服电机轴的丝杆间距为20mm,您要做到控制器发送一个脉冲伺服电机行走长度为一个丝(0.01mm)。计算得知:伺服电机转一圈需要2000个脉冲(每转一圈所需脉冲确定了,脉冲频率与伺服电机的速度的关系也就确定了)。 三个参数可以设定为:Pr4A=0,Pr48=10000,Pr4B=2000,约分一下则为:Pr4A=0,Pr48=100,Pr4B=20。 从上面的叙述可知:设定Pr48、Pr4A、Pr4B这三个参数是根据我们控制器所能发送的最大脉冲频率与工艺所要求的精度。在控制器的最大发送脉冲频率确定后,工艺精度要求越高,则伺服电机能达到的最大速度越低。松下FP1---40T型PLC的程序梯型图如下:

通过以上的图例可以帮到,如果还有其他问题的可以继续提问,很乐意解答~~


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/8145665.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-13
下一篇 2023-04-13

发表评论

登录后才能评论

评论列表(0条)

保存