cnn是集成算法吗

cnn是集成算法吗,第1张

cnn不是集成算法。CNN是图像处理的一种人工智能算法。卷积神经网络(ConvolutionalNeuralNetworks,简称CNN),是一种经典的神经网络算法。CNN五层网络结构:数据输入层,卷积层(提取图像中的局部特征),ReLU激励层,池化层(降低参数量级),全连接层。

cnn就是数控加工中心, 数控加工中心和平常说的cn(数控机床)最简单,最明显的区别是,带有自动换刀系统,就是设定好加工程序了之后,可以自动换刀。不用人工换刀。要知道换刀是数控机床最麻烦的事,要重新校准,随便弄下就1个小时。

你要看你的图像是什么。如果是彩色数字,先转成灰度。用MNIST训练网络。如果是各种主题,用彩色的imageNET训练。如果你的数据量大到足以与数据集媲美,那么直接用你的数据训练网络即可。

在流行的数据集上训练完,你需要固定卷积池化层,只训练后面的全连接层参数,用你自己的数据集。

CNN一是调整网络结构,几层卷积几层池化,卷积的模板大小等。而是在确定结构上调整参数,weight scale,learning rate,reg等。

你用CNN做图像分类,无非是把CNN当成学习特征的手段,你可以吧网络看成两部分,前面的卷积层学习图像基本-中等-高层特征,后面的全连接层对应普通的神经网络做分类。

需要学习的话,首先你去看UFLDL教程。然后cs231n

与其问别人,首先你看了imageNet数据集了吗?

对于把流行数据集与自己数据混合训练模型的方法。如果两种数据十分相似,也未尝不可。但是对于流行数据集而言,自己的标注数据量一般不会太大,如果是1:1000,1:100这种比例,那么可能不加自己的数据,完全用数据集训练的模型就能得到一个还好的结果。

如果自己的数据和数据集有些差别,那混在一起我认为自己的是在用自己的数据当做噪声加到数据集中。cnn认为图像是局部相关的,而欺骗CNN的方法则主要出于,自然图像分布在一种流形结构中,训练的模型需要这种流形假设,而人工合成的图像由于添加非自然噪点,不满足模型假设,所以能用肉眼难分辨的噪声严重干扰分类结果。

如果二者相差过大,数据集是一种分布,你的数据是另一种,放到一起训练,我没试过,但我认为结果不会太好。

这时候只能把数据集用来训练cnn的特征提取能力。而后用于分类的全连接层,视你的数据量调整规模。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/8169543.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-14
下一篇 2023-04-14

发表评论

登录后才能评论

评论列表(0条)

保存