python打开txt文件 并且对这个txt文件中的内容进行ngram分词 已有分词代码如下图且运

python打开txt文件 并且对这个txt文件中的内容进行ngram分词 已有分词代码如下图且运,第1张

fname = '/d/filename.txt'

with open(fname) as f:

  孝高 缓困 s = f.read()

ng 巧哪尺=NGram(s)

print(ng.table)

N-Gram(有时也称为N元模型)是自然语言处理中一个非常重要的概念,通常在NLP中,人们基于一定的语料库,可以利用N-Gram来预计或者评估一个句子是否合理。另外一方面,N-Gram的另外一个作用是用来评估两个字符串之间的差异程度。这是模糊匹配中常用的一种手段。本文将从此开始,进而向读者展示N-Gram在自然语言处理中的各种powerful的应用。

基于N-Gram模型定义的字符串距离

模糊匹配的关键在于如何衡量两个长得很像的单词(或字符串)之间的“差异”。这种差异通常又称为“距离”。这方面的具体算法有很多,例如基于编辑距离的概念,人们设计出了 Smith-Waterman 算法和Needleman-Wunsch 算法,其中后者还是历史上最早的应答野搭用动态规划思想设计的算法之一。现在Smith-Waterman 算法和Needleman-Wunsch 算法在生物信息学领域也有重要应用,研究人员常常用它们来计算两个DNA序列片段之间的“差异”(或称“距离”)。

我们除了可以定义两个字符串之间的编辑距离(通常利用Needleman-Wunsch算法或Smith-Waterman算法)之外,还可以定义它们之间的N-Gram距离。N-Gram(有时也称为N元模型)是自然语言处理中一个非常重要的概念。假设有一个字符串 ,那么该字符串的N-Gram就表示按长度 N 切分原词得到的词段,也就是 中所有长度为 N 的子字符串。设想如果有两个字符串,然后分别求它们的N-Gram,那么就可以从它们的共有子串的数量这个角度去定义两个字符串间的N-Gram距离。但是仅仅是简单地对共有子串进行计数显然也存在不足,这种方案显然忽略了两个字符串长度差异可能导致的问题。比如字符串 girl 和 girlfriend,二者所拥有的公共子串数量显然与 girl 和其自身所拥有的公共子串数量相等,但是我们并不能据此认为 girl 和girlfriend 是两个等同的匹配。

为了解决该问题,有学者便提出以非重复的N-Gram分词为基础来定义 N-Gram距离这一概念,可以用下面的公式来表述:

此处,|GN(s)| 是字符串 s 的 N-Gram集合,N 值一般取2或者3。以 N = 2 为例对字符串Gorbachev和Gorbechyov进行分段清拿,可得如下结果(我们用下画线标出了其中的公共子串)。

结合上面的公式,即可算得两个字符串之间的距离是8 + 9 − 2 × 4 = 9。显然,字符串之间的距离越小,它们就越接近脊竖。当两个字符串完全相等的时候,它们之间的距离就是0。

利用N-Gram模型评估语句是否合理

从现在开始,我们所讨论的N-Gram模型跟前面讲过N-Gram模型从外在来看已经大不相同,但是请注意它们内在的联系(或者说本质上它们仍然是统一的概念)。

为了引入N-Gram的这个应用,我们从几个例子开始。

首先,从统计的角度来看,自然语言中的一个句子 s 可以由任何词串构成,不过概率 P(s) 有大有小。例如:

显然,对于中文而言 s1 是一个通顺而有意义的句子,而s2 则不是,所以对于中文来说,P(s1)>P(s2) 。但不同语言来说,这两个概率值的大小可能会反转。

其次,另外一个例子是,如果我们给出了某个句子的一个节选,我们其实可以能够猜测后续的词应该是什么,例如

the large green __ . Possible answer may be “mountain” or “tree” ?

Kate swallowed the large green __ . Possible answer may be “pill” or “broccoli” ?

显然,如果我们知道这个句子片段更多前面的内容的情况下,我们会得到一个更加准确的答案。这就告诉我们,前面的(历史)信息越多,对后面未知信息的约束就越强。

如果我们有一个由 m 个词组成的序列(或者说一个句子),我们希望算得概率 P(w1,w2,⋯,wm) ,根据链式规则,可得

P(w1,w2,⋯,wm)=P(w1)P(w2|w1)P(w3|w1,w2)⋯P(wm|w1,⋯,wm−1)

这个概率显然并不好算,不妨利用马尔科夫链的假设,即当前这个词仅仅跟前面几个有限的词相关,因此也就不必追溯到最开始的那个词,这样便可以大幅缩减上诉算式的长度。即

P(wi|w1,⋯,wi−1)=P(wi|wi−n+1,⋯,wi−1)

特别地,对于 n 取得较小值的情况

当 n=1, 一个一元模型(unigram model)即为

当 n=2, 一个二元模型(bigram model)即为

当 n=3, 一个三元模型(trigram model)即为

接下来的思路就比较明确了,可以利用最大似然法来求出一组参数,使得训练样本的概率取得最大值。

使用N-Gram模型时的数据平滑算法

有研究人员用150万词的训练语料来训练 trigram 模型,然后用同样来源的测试语料来做验证,结果发现23%的 trigram 没有在训练语料中出现过。这其实就意味着上一节我们所计算的那些概率有空为 0,这就导致了数据稀疏的可能性,我们的表3中也确实有些为0的情况。对语言而言,由于数据稀疏的存在,极大似然法不是一种很好的参数估计办法。

这时的解决办法,我们称之为“平滑技术”(Smoothing)或者 “减值” (Discounting)。其主要策略是把在训练样本中出现过的事件的概率适当减小,然后把减小得到的概率密度分配给训练语料中没有出现过的事件。实际中平滑算法有很多种,例如:

▸ Laplacian (add-one) smoothing

▸ Add-k smoothing

▸ Jelinek-Mercer interpolation

▸ Katz backoff

▸ Absolute discounting

▸ Kneser-Ney

对于这些算法的详细介绍,我们将在后续的文章中结合一些实例再来进行讨论。

搜索引擎(Google或者Baidu)、或者输入法的猜想或者提示。你在用百度时,输入一个或几个词,搜索框通常会以下拉菜单的形式给出几个像下图一样的备选,这些备选其实是在猜想你想要搜索的那个词串。再者,当你用输入法输入一个汉字的时候,输入法通常可以联系出一个完整的词,例如我输入一个“刘”字,通常输入法会提示我是否要输入的是“刘备”。通过上面的介绍,你应该能够很敏锐的发觉,这其实是以N-Gram模型为基础来实现的,如果你能有这种觉悟或者想法,那我不得不恭喜你,都学会抢答了!

参考: https://blog.csdn.net/baimafujinji/article/details/51281816

主要看你的词表态旁结构了,最大词长的初始值,查词典的次亩早数和匹配的次数,然后得出时间复杂度,原始hash算法复杂度没记错的话应该是2.89,11年看过一个文献,提出一种改进的算法时间复杂度是2.291…… 另外,分词算法并不是原封不动的,比帆耐橡如有些搜索。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/8231600.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-14
下一篇 2023-04-14

发表评论

登录后才能评论

评论列表(0条)

保存