下面示出了其计算过程的流程图:
在用C语言编写CRC校验码的实现程序时我们应该注意,生成多项式 对应的十六进制数为0x18005,由于CRC寄存器左移过程中,移出的最高位为1时与 相异或,所以与16bit的CRC寄存器对应并塌圆的生成多项式的十六进制数可用0x8005表示。下面给出并行处理8bit数据流的C源程序:
unsigned short crc_dsp(unsigned short reg, unsigned char data_crc)
//reg为crc寄存器, data_crc为将要处理的8bit数据流
{
unsigned short msb//crc寄存器将移出的最高1bit
unsigned short data
unsigned short gx = 0x8005, i = 0//i为左移次数, gx为生成多项式
data = (unsigned short)data_crc
data = data <<8
reg = reg ^ data
do
{
msb = reg &0x8000
reg = reg <<1
if(msb == 0x8000)
{
reg = reg ^ gx
}
i++
}
while(i <8)
return (reg)
}
以上为处理每一个8bit数据流的子程序,在计衫扮算整个数据流的CRC校验码时,我们只需将CRC_reg的初值置为0x0000,求第一个8bit的CRC值,之后,即可将上次求得的CRC值和本次将要处理的8bit数据作为函数实参传递给上述子程序的形参进行处理即可,最终返回的reg值便是我们所想得到的整个数据流的CRC校验值。
按位计算CRC采用CRC-CCITT多项式,多项式为0x11021,C语言编程时,参与计算为0x1021。当按位计算CRC时,例如计算二进制序列为1001 1010 1010 1111时,将二进制序列数左移16位,即为1001 1010 1010 1111 (0000 0000 0000 0000),实际上该二进制序列可拆分为1000 0000 0000 0000 (0000 0000 0000 0000) + 000 0000 0000 0000 (0000 0000 0000 0000) + 00 0000 0000 0000 (0000 0000 0000 0000) + 1 0000 0000 0000 (0000 0000 0000 0000) + ……现在开始分析运算:
<1>对第一个二进制分序列求余数,竖式除激肢法即为0x10000 ^ 0x11021运算,后面的0位保留;
<2>接着对第二个二进制分序列求余数,将第一步运算的余数*2后再和第二个二进制分序列一起对0x11021求余,这一步理解应该没什么问题。如果该分序列为0,无需计算。
<3>对其余的二进制序列求余与上面两步相同。
<4>计算到最后一位时即为整个二进制序列的余数,即为CRC校验码。
该计算岩衡方法相当于对每一位计算,运算过程很容易理解,所占内存少,缺点是一位一位计算粗铅做比较耗时。
下面给出C语言实现方法:
代码如下:
unsigned char test[16] = {0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xaa,0xbb,0xcc,0xdd,0xee,0xff}
unsigned char len = 16
void main( void )
{
unsigned long temp = 0
unsigned int crc
unsigned char i
unsigned char *ptr = test
while( len-- ) {
for(i = 0x80i != 0i = i >>1) {
temp = temp * 2
if((temp &0x10000) != 0)
temp = temp ^ 0x11021
if((*ptr &i) != 0)
temp = temp ^ (0x10000 ^ 0x11021)
}
ptr++
}
crc = temp
printf("0x%x ",crc)
}
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)