求用C语言实现FFT变换的程序(见下面)

求用C语言实现FFT变换的程序(见下面),第1张

你好,这是我的回答,希望可以帮到你。

1)结果讨论

一,如果对信号进行同样点数N的FFT变换,采样频率fs越高,则可以分析越高频的信号;与此同时,采样频率越低,对于低频信号的频谱亏凳橘分辨率则越好。

二,假设采样点不在正弦信号的波峰、波谷、以及0电压处,频谱则会产生泄露(leakage)。

三,对于同样的采样率fs,提高FFT的点数N,则可提高频谱的分辨率。

四,如果采样频率fs小于2倍信号频率2*fs(奈圭斯特定理),则频谱分析结果会出错。

五,对于(二)中泄露现象,可以通过在信号后面补零销团点解决。

2)程序及注解如下

%清除命令窗口及变量

clc

clear all

%输入f、N、T、是否补零(补几个零)

f=input('Input frequency of the signal: f\n')

N=input('Input number of pointsl: N\n')

T=input('Input sampling time: T\n')

flag=input('Add zero too sampling signal or not? yes=1 no=0\n')

if(flag)

ZeroNum=input('Input nmber of zeros\n')

else

ZeroNum=0

end

%生成信号,signal是原信号。signal为采样信号。

fs=1/T

t=0:0.00001:T*(N+ZeroNum-1)

signal=sin(2*pi*f*t)

t2=0:T:T*(N+ZeroNum-1)

signal2=sin(2*pi*f*t2)

if (flag)

signal2=[signal2 zeros(1, ZeroNum)]

end

%画出原信号及采样信号。

figure

subplot(2,1,1)

plot(t,signal)

xlabel('Time(s)')

ylabel('Amplitude(volt)')

title('Singnal')

hold on

subplot(2,1,1)

stem(t2,signal2,'r')

axis([0 T*(N+ZeroNum) -1 1])

%作FFT变换,计算其幅值,归一化处理,并画出频谱。

Y = fft(signal2,N)

Pyy = Y.* conj(Y)

Pyy=(Pyy/sum(Pyy))*2

f=0:fs/(N-1):fs/24

subplot(2,1,2)

bar(f,Pyy(1:N/2))

xlabel('Frequency(Hz)')

ylabel('Amplitude')

title('Frequency compnents of signal')

axis([0 fs/2 0 ceil(max(Pyy))])

grid on

祝你好运!

我可粗隐以帮助你,你先设置我最佳答案后,我百度Hii教你。

分类: 教育/科学 >>学习帮助

问题描述:

追20分

解析:

快速傅里叶变换 要用C++ 才行吧团早 你可塌空雀以用MATLAB来实现更方便点啊

此FFT 是用VC6.0编写,由FFT.CPP;STDAFX.H和STDAFX.CPP三个文件组成,编译成功。程序可以用文件输入和输出为文件。文件格式为TXT文件。测试结果如亏没下:

输入文件:8.TXT 或手动输入

8 N

1

2

3

4

5

6

7

8

输出结果为:或保存为TXT文件。(8OUT.TXT)

8

(36,0)

(-4,9.65685)

(-4,4)

(-4,1.65685)

(-4,0)

(-4,-1.65685)

(-4,-4)

(-4,-9.65685)

下面为FFT.CPP文件:

FFT.cpp : 定义控制台应用程序的入口点。

#include "stdafx.h"

#include <iostream>

#include <plex>

#include <bitset>

#include <vector>

#include <conio.h>

#include <string>

#include <fstream>

using namespace std

bool inputData(unsigned long &, vector<plex<double>>&)手工输入数据

void FFT(unsigned long &, vector<plex<double>>&)FFT变换

void display(unsigned long &, vector<plex<double>>&)显示结果

bool readDataFromFile(unsigned long &, vector<plex<double>>&)从文件中读取数据

bool saveResultToFile(unsigned long &, vector<plex<double>>&)保存结果至文件中

const double PI = 3.1415926

int _tmain(int argc, _TCHAR* argv[])

{

vector<plex<double>>vecList有限长序列

unsigned long ulN = 0N

char chChoose = ' '功能选择

功能循环

while(chChoose != 'Q' &&chChoose != 'q')

{

显示选择项

cout <<"\nPlease chose a function" <<endl

cout <<"\t1.Input data manually, press 'M':" <<endl

cout <<"\t2.Read data from file, press 'F':" <<endl

cout <<"\t3.Quit, press 'Q'" <<endl

cout <<"Please chose:"

输入选择

chChoose = getch()

判断

switch(chChoose)

{

case 'm': 手工输入数据

case 'M':

if(inputData(ulN, vecList))

{

FFT(ulN, vecList)

display(ulN, vecList)

saveResultToFile(ulN, vecList)

}

break

case 'f': 从文档读取数据

case 'F':

if(readDataFromFile(ulN, vecList))

{

FFT(ulN, vecList)

display(ulN, vecList)

saveResultToFile(ulN, vecList)

}

break

}

}

return 0

}

bool Is2Power(unsigned long ul) 判断是否是2的整数次幂

{

if(ul <2)

return false

while( ul >1 )

{

if( ul % 2 )

return false

ul /= 2

}

return true

}

bool inputData(unsigned long &ulN, vector<plex<double>>&vecList)

{

题目

cout<<"\n\n\n==============================Input Data===============================" <<endl

输入N

cout<<"\nInput N:"

cin>>ulN

if(!Is2Power(ulN)) 验证N的有效性

{

cout<<"N is invalid (N must like 2, 4, 8, .....), please retry." <<endl

return false

}

输入各元素

vecList.clear()清空原有序列

plex<double>c

for(unsigned long i = 0i <ulNi++)

{

cout <<"Input x(" <<i <<"):"

cin >>c

vecList.push_back(c)

}

return true

}

bool readDataFromFile(unsigned long &ulN, vector<plex<double>>&vecList) 从文件中读取数据

{

题目

cout<<"\n\n\n===============Read Data From File==============" <<endl

输入文件名

string strfilename

cout <<"Input filename:"

cin >>strfilename

打开文件

cout <<"open file " <<strfilename <<"......." <<endl

ifstream loadfile

loadfile.open(strfilename.c_str())

if(!loadfile)

{

cout <<"\tfailed" <<endl

return false

}

else

{

cout <<"\tsucceed" <<endl

}

vecList.clear()

读取N

loadfile >>ulN

if(!loadfile)

{

cout <<"can't get N" <<endl

return false

}

else

{

cout <<"N = " <<ulN <<endl

}

读取元素

plex<double>c

for(unsigned long i = 0i <ulNi++)

{

loadfile >>c

if(!loadfile)

{

cout <<"can't get enough infomation" <<endl

return false

}

else

cout <<"x(" <<i <<") = " <<c <<endl

vecList.push_back(c)

}

关闭文件

loadfile.close()

return true

}

bool saveResultToFile(unsigned long &ulN, vector<plex<double>>&vecList) 保存结果至文件中

{

询问是否需要将结果保存至文件

char chChoose = ' '

cout <<"Do you want to save the result to file? (y/n):"

chChoose = _getch()

if(chChoose != 'y' &&chChoose != 'Y')

{

return true

}

输入文件名

string strfilename

cout <<"\nInput file name:"

cin >>strfilename

cout <<"Save result to file " <<strfilename <<"......" <<endl

打开文件

ofstream savefile(strfilename.c_str())

if(!savefile)

{

cout <<"can't open file" <<endl

return false

}

写入N

savefile <<ulN <<endl

写入元素

for(vector<plex<double>>::iterator i = vecList.begin()i <vecList.end()i++)

{

savefile <<*i <<endl

}

写入完毕

cout <<"save succeed." <<endl

关闭文件

savefile.close()

return true

}

void FFT(unsigned long &ulN, vector<plex<double>>&vecList)

{

得到幂数

unsigned long ulPower = 0幂数

unsigned long ulN1 = ulN - 1

while(ulN1 >0)

{

ulPower++

ulN1 /= 2

}

反序

bitset<sizeof(unsigned long) * 8>bsIndex二进制容器

unsigned long ulIndex反转后的序号

unsigned long ulK

for(unsigned long p = 0p <ulNp++)

{

ulIndex = 0

ulK = 1

bsIndex = bitset<sizeof(unsigned long) * 8>(p)

for(unsigned long j = 0j <ulPowerj++)

{

ulIndex += bsIndex.test(ulPower - j - 1) ? ulK : 0

ulK *= 2

}

if(ulIndex >p)

{

plex<double>c = vecList[p]

vecList[p] = vecList[ulIndex]

vecList[ulIndex] = c

}

}

计算旋转因子

vector<plex<double>>vecW

for(unsigned long i = 0i <ulN / 2i++)

{

vecW.push_back(plex<double>(cos(2 * i * PI / ulN) , -1 * sin(2 * i * PI / ulN)))

}

for(unsigned long m = 0m <ulN / 2m++)

{

cout<<"\nvW[" <<m <<"]=" <<vecW[m]

}

计算FFT

unsigned long ulGroupLength = 1段的长度

unsigned long ulHalfLength = 0段长度的一半

unsigned long ulGroupCount = 0段的数量

plex<double>cwWH(x)

plex<double>c1G(x) + WH(x)

plex<double>c2G(x) - WH(x)

for(unsigned long b = 0b <ulPowerb++)

{

ulHalfLength = ulGroupLength

ulGroupLength *= 2

for(unsigned long j = 0j <ulNj += ulGroupLength)

{

for(unsigned long k = 0k <ulHalfLengthk++)

{

cw = vecW[k * ulN / ulGroupLength] * vecList[j + k + ulHalfLength]

c1 = vecList[j + k] + cw

c2 = vecList[j + k] - cw

vecList[j + k] = c1

vecList[j + k + ulHalfLength] = c2

}

}

}

}

void display(unsigned long &ulN, vector<plex<double>>&vecList)

{

cout <<"\n\n===========================Display The Result=========================" <<endl

for(unsigned long d = 0d <ulNd++)

{

cout <<"X(" <<d <<")\t\t\t = " <<vecList[d] <<endl

}

}

下面为STDAFX.H文件:

stdafx.h : 标准系统包含文件的包含文件,

或是常用但不常更改的项目特定的包含文件

#pragma once

#include <iostream>

#include <tchar.h>

TODO: 在此处引用程序要求的附加头文件

下面为STDAFX.CPP文件:

stdafx.cpp : 只包括标准包含文件的源文件

FFT.pch 将成为预编译头

stdafx.obj 将包含预编译类型信息

#include "stdafx.h"

TODO: 在 STDAFX.H 中

引用任何所需的附加头文件,而不是在此文件中引用

1、二维FFT相当于对行和列分别进行一维FFT运算。具体的实现办法如下:

先对各行逐一进行一维FFT,然后再对变换后的新矩阵的各列逐一进行一维FFT。相应的伪代码如下所示:

for (int i=0i<Mi++)

FFT_1D(ROW[i],N)

for (int j=0j<Nj++)

FFT_1D(COL[j],M)

其中,ROW[i]表示矩阵的第i行。注码搜意这只是一个简单的记法,并不能完全照抄。还需要通过一些语句来生成各行的数据。同理,COL[i]是对矩阵的第i列的一种简单表示方法。

所以,关键是一维FFT算法的实现。

2、例程:

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#define N 1000

/*定义复数类型*/

typedef struct{

double real

double img

}complex

complex x[N], *W /*输入序列,变换核*/

int size_x=0      /*输入序列的大小,在本程序中仅限2的次幂*/

double PI         /*圆周率*/

void fft()     /*快速傅里叶变换*/

void initW()   /*初始化变换核*/

void change() /*变址*/

void add(complex ,complex ,complex *) /*复数加法*/

void mul(complex ,complex ,complex *) /*复数乘法*/

void sub(complex ,complex ,complex *) /*复数减法*/

void output()

int main(){

int i                             /*输出结果*/

system("cls")

PI=atan(1)*4

printf("Please input the size of x:\n")

scanf("%d",&size_x)

printf("Please input the data in x[N]:\n")

for(i=0i<size_xi++)

   scanf("%lf%lf",&x[i].real,&x[i].img)

initW()

fft()

output()

return 0

}

/*快速傅里叶变换*/

void fft(){

int i=0,j=0,k=0,l=0

complex up,down,product

change()

for(i=0i< log(size_x)/log(2) i++){   /*一级蝶形运算*/

   l=1<<i

   for(j=0j<size_xj+= 2*l ){             /*一组蝶形运算*/

    for(k=0k<lk++){        /*一个蝶形运算*/

      改弯mul(x[j+k+l],W[size_x*k/2/l],&product)

      add(x[j+k],product,&up)

      sub(x[j+k],product,&down)

      x[j+k]=up

      x[j+k+l]=down

    }

   }

}

}

/*初始化变换核*/

void initW(){

int i

W=(complex *)malloc(sizeof(complex) * size_x)

for(i=0i<size_xi++){

   W[i].real=cos(2*PI/size_x*i)

   W[i].img=-1*sin(2*PI/size_x*i)

}

}

/*变址计算,将x(n)码位倒置*/

void change(){

complex temp

unsigned short i=0,j=0,k=0

double t

for(i=0i<size_xi++){

   k=ij=0

   t=(log(size_x)/log(2))

   while( (t--)>0 ){

    j=j<<核模闷1

    j|=(k & 1)

    k=k>>1

   }

   if(j>i){

    temp=x[i]

    x[i]=x[j]

    x[j]=temp

   }

}

}

/*输出傅里叶变换的结果*/

void output(){

int i

printf("The result are as follows\n")

for(i=0i<size_xi++){

   printf("%.4f",x[i].real)

   if(x[i].img>=0.0001)printf("+%.4fj\n",x[i].img)

   else if(fabs(x[i].img)<0.0001)printf("\n")

   else printf("%.4fj\n",x[i].img)

}

}

void add(complex a,complex b,complex *c){

c->real=a.real+b.real

c->img=a.img+b.img

}

void mul(complex a,complex b,complex *c){

c->real=a.real*b.real - a.img*b.img

c->img=a.real*b.img + a.img*b.real

}

void sub(complex a,complex b,complex *c){

c->real=a.real-b.real

c->img=a.img-b.img

}


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/8255547.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-14
下一篇 2023-04-14

发表评论

登录后才能评论

评论列表(0条)

保存