在我们进行数据处理时,相关性分析是我们最常使用的分析方法之一。相关性,即衡量二个特征或者两个变量之间的关联程度。两个变量的相关关系意味着二者之间存在着某种数学关系。我们并不知道两个变量之间是否存在着 实际关系 通常我们计算的是两个特征的数组之间的相关系数。我们常用的相关性计算方法有哪些呢?
Pearson correlation coefficient:用于检测两个变量是否线性相关,要求数据需来自于正态分布的漏做总。相关系数在迟猜[-1,1]之间
cov(X,Y)协方差 (δX*δY) 二者标准差的乘积。
常规相关等级如下:
r = 0 二者完全不相关
0<|r|<=0.3 弱相关
0.3<|r|<=0.5中等相关
0.5<|r|<=0.8显著相关
0.8<|r|<=1 强相关
皮尔森相关系数适用范围:
适用于服从正态分布的两连续型变量,可绘制散点图,发现有线性趋势之后,进而计算Pearson相关系数,以此描述两变量的线性相关性。
Spearman 相关评估两个连续或顺序变量之间的单调码搜型关系。在单调关系中,变量倾向于同时变化,但不一定以恒定的速率变化。Spearman 相关系数基于每个变量的秩值(而非原始数据)。Spearman 相关通常用于评估与顺序变量相关的关系。
优势:
Kendall's tau-b(肯德尔)等级相关系数:用于反映分类变量相关性的指标,适用于两个分类变量均为有序分类的情况。对相关的有序变量进行非参数相关检验;取值范围在[-1,1]之间,此检验适合于正方形表格。
kendall tau coefficent defined:
from MBA智库-Kendall等级相关系数
使用试剂:肯德尔等级相关系数是用以反应两组变量之间关系密切程度的统计指标。
(用的较少,后续再补充)
一般的都可以使用pearson和Spearman相关系数解决。
进行机器学习特征筛选时,经常使用到的方法就有最大互信息系数。
最大信息系数(MIC)于 2011 年提出,它是用于检测变量之间非线性相关性的最新方法。用于进行 MIC 计算的算法将信息论和概率的概念应用于连续型数据。
MIC 能够表示各种线性和非线性的关系,并已得到广泛应用。它的值域在 0 和 1 之间,值越高表示相关性越强。
见参考资料《最大信息系数》
更多的需要学习(任重而道远啊,。。。。。)
三大相关系数
斯皮尔曼相关系数
线性系数,斯皮尔曼相关性系数计算及详解
肯德尔等级相关系数
最大信息系数
特迹谈并征选择主要的两个功能:
pearson Correlation :皮尔森相关系数是一种最简单的,能帮助理解特征和响应变量之间线性相关性,结果取值区间为[-1,1],-1表示完全地负相关,+1表示完全地正相关,0表示没有线性相关。
互信息和最大信息系数(Mutual information and maximal information coefficient)
想把互信息直接用于特征选择其实不太方便:
最大信息系数克服了这两个问题,它首先寻找一种最优的离散化方式,然后把互信息取值转换成一种度量方式,取值区间在[0,1]
ps: MIC的统计能力遭到了一些质疑,当零假设不成立时,MIC的统计就会受到影响。在有的数据集上不存在这姿迹个问题,但有的数据集上就存在这个问题。
距离相关系数法(Distance correlation)
距离相关系数是为了克服Pearson相关系数的弱点而生的,即使Pearson相关系数是0,我们也不能断定这两个变量是独立的(有可能是非线性相关);但如果距离相关系数是0,那么我们就可以说这两个变量时独立的。
尽管有MIC和距离相关系数在了,但当侍拍变量之间的关系接近线性相关的时候,Pearson相关系数任然是不可替代的。第一、Pearson相关系数计算速度快,这在处理大规模数据的时候很重要;第二、Pearson相关系数的取值区间是[-1,1],而MIC和距离系数都是[0,1],这个特点使得Pearson相关系数能够表征更丰富的关系,符号表示关系的正负,绝对值能够表示强度。当然,Pearson相关性有效的前提是两个变量的变化关系的单调的。
基于学习模型的特征排序(Model based ranking)
如何用回归模型的系数来选择特征,越是重要的特征在模型中对应的系数就会越大,而跟输出变量越是无关的特征对应的系数就会越接近于0,在噪音不多的数据上,或者是数量远远大于特征数的数据上,如果特征之间相对来说是比较独立的,那么即使是运用最简单的线性回归模型也一样能取得非常好的效果。
正则化
正则化就是把额外的约束或者惩罚项加到已有模型(损失函数)上,以防止过拟合并提高泛化能力。
L1正则化和L2正则化也称为Lasso和Ridge
L1正则化(Lasso)
L1正则化将系数w的L1范数作为惩罚项加到顺势函数上,由于正则项非零,这就迫使那些弱的特征所对应的系数变为0,因为L1正则化往往会使学到的模型很稀疏(系数w经常为0),这个特性使得L1正则化作为一种很好地特征选择方法。
L1正则化非正则化线性模型一样也是不稳定的,如果特征集合中具有相关联的特征,当数据发生细微变化时也有可能导致很大的模型差异。
L2正则化(Ridge regression)
L2正则化将系数向量的L2范数添加到了损失函数中。由于L2惩罚项中系数是二次方的,这使得L2和L1有着诸多差异,最明显的一点就是,L2正则化会让系数的取值变得平均。对于关联特征,这意味着他们能够获得更相近的对应系数。还是以Y=X1+X2为例,假设X1和X2具有很强的关联,如果用L1正则化,不论学到的模型是Y=X1+X2还是Y=2X1,惩罚都是一样的,都是2alpha。但是对于L2来说,第一个模型的惩罚项是2alpha,但第二个模型的是4*alpha。可以看出,系数之和为常数时,各系数相等时惩罚是最小的,所以才有了L2会让各个系数趋于相同的特点。
可以看出,L2正则化对于特征选择来说一种稳定的模型,不像L1正则化那样,系数会因为细微的数据变化而波动。所以L2正则化和L1正则化提供的价值是不同的,L2正则化对于特征理解来说更加有用:表示能力强的特征对应的系数是非零。
随机森林具有准确率高、鲁棒性好、易于使用等优点,这使得它成为了目前最流行的机器学习算法之一。随机森林提供了两种特征选择的方法:mean decrease impurity 和 mean decrease accuracy。
平均不纯度减少(mwan decrease impurity)
随机森林由多个决策树构成。决策树中每一个节点都是关于某一个特征的条件,为的是将数据集按照不同的响应变量一分为二。利用不纯度可以确定节点(最优条件),对于分类问题,通常采用基尼不纯度或者信息增益,对于回归问题,通常采用的是方差或者最小二乘拟合。当训练决策树的时候,可以计算出每个特征减少了多少树的不纯度,对于一个决策树森林来说,可以算出每个特征平均减少了多少不纯度,并把它平均减少的不纯度作为特征选择的值。
这里特征得分实际上采用的是Gini Importance。使用基于不纯度的方法的时候,要记住:1.这种方法存在偏向,对具有更多类别的变量会更有利;2.对于存在关联的多个特征,其中任意一个都可以作为指示器(优秀的特征),并且一旦某个特征被选择之后,其他特征的重要程度会急剧下降,因为不纯度已经被选中的哪个特征降下来了,其他的特征就很难再降低那么多不纯度了,这样一来,只有先被选中的那个特征很重要,而其余的特征是不重要的,但实际上这些特征对响应变量的作用确定非常接近的。
平均精确率减少(Mean decrease accuracy)
特征选择方法就是直接度量每个特征对模型精确度的影响。主要思路是打乱每个特征的特征值顺序,并且度量顺序变动对模型的精确率的影响。很明显,对于不重要的变量来说,打乱顺序对模型的精确率影响不会太大,但是对于重要的变量来说,打乱顺序就会降低模型的精确率。
建立在基于模型的特征选择方法基础之上的,例如回归和SVM,在不同的子集上建立模型,然后汇总最终确定特征得分。
稳定性选择(Stability selection)
稳定性选择是一种基于二次抽样和选择算法相结合较新的方法,选择算法可以是回归,SVM或者类似的方法。它的主要思想是在不同的数据子集和特征子集上运行特征选择算法,不断的重复,最终汇总特征选择结果。比如可以统计某个特征被认为是重要特征的频率(被选为重要特征的次数除以它所在的子集被测试的次数)。理想的情况下,重要特征的得分会接近100%。稍微弱一点的特征得分会是非零的数,而最无用的热证得分将会接近于0.
sklearn在随机lasso和随机逻辑回归中有对稳定性选择的实现。
递归特征消除(Recursive feature elimination RFE)
递归特征消除的主要思想是反复的构建模型(如SVM或者回归模型)然后选出最好的(或者最差的)的特征(可以根据系数来选),把选出来的特征放到一遍,然后在剩余的特征上重复这个过程,直到所有特征都遍历了,这个过程中特征被消除的次序就是特征的排序,因此,这是一种寻找最优特征子集的贪心算法。
RFE的稳定性很大程度上取决于在迭代的时候底层采用哪种模型。例如,假如RFE采用的普通的回归,没有经过正则化的回归是不稳定的,那么RFE就是不稳定的,假如采用的是Ridge,而用Ridge正则化的回归是稳定的,那么RFE就是稳定的。
Sklearn提供了RFE包,可以用于特征消除,还提供了RFECV,可以通过交叉验证来对特征进行排序。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)