linux下面yum安装和源码编译安装的区别

linux下面yum安装和源码编译安装的区别,第1张

YUM安装可以看成是在线安装的一种方式,你只需要yum install 软件名,系统就自动根据yum源配置文件中的镜像位置去下载安装包了,并可以自动分析所需的软件依赖关系,自动安装所需的依赖软件包。此方式适合初学者,简单方便,不用考虑依赖关系。但有些软件并不能通过yum来安装。。

而源码安装方式是需要自己到网上下载源码包,然后解压安装。此方式可以指定配置参数,更加灵活方便,兼容性更强。比较适合对Linux系统有较多了解的进阶用户使用。。

实际工作中,两种方式结合起来使用,效果更佳。

linux内核镜像格式

一、Linux内核镜像格式

Linux内核有多种格式的镜像,包括vmlinux、Image、zImage、bzImage、uImage、xipImage、bootpImage等.

(1)kernel镜像格式:vmlinux

vmlinuz是可引导的、可压缩的内核镜像,vm代表Virtual Memory.Linux支持虚拟内存,因此得名vm.它是由用户对内核源码编译得到,实质是elf格式的文件.也就是说,vmlinux是编译出来的最原始的内核文件,未压缩.这种格式的镜像文件多存放在PC机上.

【 attention】elf格式文件

ELF,Executable and Linkable Format,可执行可链接格式,是UNIX实验室作为应用程序二进制接口而发布的,扩展名为elf.可以简单的认为,在elf格式的文件中,除二进制代 码外,还包括该可执行文件的某些信息,比如符号表等.

(2)kernel镜像格式:Image

Image是经过objcopy处理的只包含二进制数据的内核代码,它已经不是elf格式了,但这种格式的内核镜像还没有经过压缩.

【 attention】objcopy

GNU使用工具程序objcopy作用是拷贝一个目标文件的内容到另一个目标文件中,也就是说,可以将一种格式的目标文件转换成另一种格式的目标文件. 通过使用binary作为输出目标(-o binary),可产生一个原始的二进制文件,实质上是将所有的符号和重定位信息都将被抛弃,只剩下二进制数据.

(3)kernel镜像格式:zImage

zImage是ARM linux常用的一种压缩镜像文件,它是由vmlinux加上解压代码经gzip压缩而成,命令格式是#make zImage.这种格式的Linux镜像文件多存放在NAND上.

(4)kernel镜像格式:bzImage

bz表示big zImage,其格式与zImage类似,但采用了不同的压缩算法,注意,bzImage的压缩率更高.

(5)kernel镜像格式:uImage

uImage是uboot专用的镜像文件,它是在zImage之前加上一个长度为0x40的头信息(tag),在头信息内说明了该镜像文件的类型、加载 位置、生成时间、大小等信息.换句话说,若直接从uImage的0x40位置开始执行,则zImage和uImage没有任何区别.命令格式是#make uImage.这种格式的Linux镜像文件多存放在NAND上.

(6)kernel镜像格式:xipImage

这种格式的Linux镜像文件多存放在NorFlash上,且运行时不需要拷贝到内存SDRAM中,可以直接在NorFlash中运行.

二、Linux内核镜像的产生过程

在嵌入式Linux中,内核的启动过程分为两个阶段.其中,第一阶段启动代码放在arch/arm/kernel/head.S文件中,该文件与体系 结果相关,与用户的开发板无关,主要是初始化ARM内核等.第二阶段启动代码是init目录下的main.c.现以执行命令#make zImage为例来说明,arm-linux内核镜像的产生过程.

(1)当用户对Linux内核源码进行编译时,kernel的第1/2阶段代码会生成可执行文件vmlinux,该文件是未被压缩的镜像文件,非常大,不能直接下载到NAND中,通常放在PC机上,这也是最原始的Linux镜像文件.试验时该文件约50M.

(2)镜像文件vmlinux由于很大,肯定不能直接烧入NAND中,因此需要进行二进制化,即经过objcopy处理,使之只包含二进制数据的内核代 码,去除不需要的文件信息等,这样就制作成了image镜像文件.该镜像文件也是未压缩,只是经过了二进制化而变小.试验时该文件约5M.

(3) 一般来说,内存SDRAM中的内核镜像是经过压缩的,只是在运行时再将其解压.所以,编译时会先使用gzip将镜像文件image进行压缩(压缩比约为 2:1),再将压缩后的镜像文件和源码中的两个文件arch/arm/boot/compressed/head.S、arch/arm/boot /compressed/misc.c一起链接生成压缩后的镜像文件compress/vmlinux.试验时该文件约为2.5M.注意,这两个源码文件 是解压程序,用于将内存SDRAM中的压缩镜像zImage进行解压.

(4)压缩后的镜像文件compress/vmlinux经过二进制化,最终生成镜像文件zImage,试验时该文件约为2.5M.当然,在内存 SDRAM中运行压缩镜像文件zImage时,会首先调用两个解压程序arch/arm /boot/compressed/head.S、arch/arm/boot/compressed/misc.c将自身解压,然后再执行kernel 的第一阶段启动代码arch/arm/kernel/head.S.简而言之,在内存中运行内核时,kernel先自身解压,再执行第一阶段启动代码.试 验时运行在内存中的镜像文件约为5M,与image镜像文件大小相同.

(

因为一般电脑安装的系统都是Windows,而整个编译过程都需要在Linux环境下实现,所以最好是在虚拟机里安装Linux系统来完成这一过程。我使用的虚拟机是VMware-workstation-full-v7.1.4。

然后,我们需要下载一个较高版本的Linux系统的镜像文件,安装在虚拟机上,作为编译环境。我使用的是ubuntu-11.04-desktop-i386。之所以选择较高版本,是因为它的界面比较方便用户 *** 作。

然后下载一个Linux内核源代码文件,将它保存到虚拟机上新安装的系统中去。并解压到/usr/src目录。我使用的是linux-2.6.36,下载低版本的原因是,小巧轻便,易于编译。

解压命令如下:

bzip2

-d

linux-2.6.36.tar.bz2

tar

-xvf

linux-2.6.36.ta

修改/usr/src/linux-2.6.36/kernel/sys.c文件,在文件末尾增加一个系统调用函数。自行编写一个简单的程序即可,只为测试用。

修改/usr/src/linux-2.6.36/arch/x86/kernel/syscall_table_32.S,为新添加的程序配置系统调用号。

在/usr/src/linux-2.6.36/arch/x86/include/asm/unistd_32.h中配置系统调用表。

下面就是最重要的内核编译与安装:

首先配置编译信息,使其生成适合当前机器的Makefile,输入make

oldconf

ig。

接着还要输入make

menuconfig,在字符界面下进行必要的细微的修改。

然后要经过四步编译过程(直接输入命令即可):

(1)make

bzImage

将内核编译为压缩映像,存储在源码根目录下的“System.map”文件中。

(2)make

modules

编译各个模块。

(3)sudo

make

modules_install

安装模块

(4)sudo

make

install

安装内核

第(2)(3)步等待时间较长,可能需要数个小时,请耐心等待。

无报错的话重启进入GRUB界面,就可以看到新编译的内核了。

按回车键进入我们编译的目标内核中,用关键词搜索查看新增加的系统调用“my

call”是否已在内核中:

编写测试程序,调用新添加的系统调用:

测试成功,说明系统调用添加成功,进而说明内核编译成功!

以上的办法你可以试一下,希望对你有所帮助。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/8283458.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-15
下一篇 2023-04-15

发表评论

登录后才能评论

评论列表(0条)

保存