Linux系统分区

Linux系统分区,第1张

Linux默认可分为3个分区,分别是boot分区、swap分区和根分区。

boot分区

在linux中,boot是存储内核及在引导过程中使用文件的分区,是启动linux时使用的一些核心文件在boot中包括了系统Kernel的配置文件、启动管理程序GRUB的目录、启动时的模块供应的主要来源Initrd文件和vmlinuz文件。

/boot分区就是 *** 作系统的内核及在引导过程中使用的文件,一般是几年前的版本要求划分的一个区,大小为100MB左右,但现在的新版本都不需要对这个分区进行单独划分,也就是说你完全可以不分/boot。

安装Linux只要求两个基本分区,即根分区及交换分区,如果你的磁盘空间足够大,可以多划分空间给根分区,你也可以把常用的目录新建到桌面,如下载的软件包,放到桌面不影响你进入Linux系统的速度,当然这要求你有足够大的根分区。

swap分区

SWAP就是LINUX下的虚拟内存分区,它的作用是在物理内存使用完之后,将磁盘空间(也就是SWAP分区)虚拟成内存来使用

它和Windows系统的交换文件作用类似,但是它是一段连续的磁盘空间,并且对用户不可见。

需要注意的是,虽然这个SWAP分区能够作为"虚拟"的内存,但它的速度比物理内存可是慢多了,因此如果需要更快的速度的话,并不能寄厚望于SWAP,最好的办法仍然是加大物理内存。SWAP分区只是临时的解决办法.

根分区

linux根分区是系统分区的意思,系统内所有的东西都存放在根分区中,也被称为root分区Linux是一个树形文件系统,根分区就是它的root节点,任何的目录文件都会挂在根节点以下,并且linux只有一个根,不管对硬盘分多少个区,都要将这些分区挂载到根目录底下才可以使用。

所谓根分区,说白了就是系统分区,是root分区,所有的东西都放在这里面。

Linux是一个树形文件系统,根分区就是它的root节点,任何的目录文件都会挂在根节点以下。Linux只有一个根。你可以给你的硬盘进行分区,但是,分区设备一定挂载到linux根目录下的指定位置,如/usr,/var,/home等。如果要对分区进行 *** 作的话,只能到分区所挂载的目录中进行 *** 作。所以,不管对硬盘分多少个区,都要将这些分区挂载到根目录底下才可以使用。

为了更加有效的管理内存并减少出错,现代系统提供了一种对主存的抽象概念,叫做虚拟内存。为每个进程提供了一个私有的地址空间。作用可总结为以下三点:

虚拟内存概念分为两部分,一部分是物理内存,还有一部分是位于交换区的磁盘空间,这部分磁盘空间在内存不足时可以作为内存,将活动不频繁的数据放入磁盘中。

页表将虚拟页映射到物理页,每次地址翻译硬件将虚拟地址装换为物理地址时都会读取页表。 *** 作系统负责维护页表的内容,以及在磁盘和DRAM之间来回传送页。实际上: *** 作系统为每个进程提供了一个独立的页表,因而也就是一个独立的虚拟地址空间。

DRAM缓存不命中称之为缺页 :当发生缓存不命中时,会触发一个缺页异常,缺页异常调用内核中的缺页异常处理程序,该程序会选择一个牺牲页。

页表是带许可位的,例如SUP,VP0,VP1,VP2等,其中SUP只能在超级用户模式下访问,用户模式有读VP0和读写VP1的权限,如果一条指令违反了许可条件,那么cpu会触发一个一般保护故障,将控制传递给一个内核中的异常处理程序,linux shell一般将这种异常报告为段错误(segmentation fault)

维护64位的虚拟地址空间一张页表肯定是不够用的,所以要用多级页表,也就是在一张页表里面维护的是下一张页表的地址,多级之后会指向实际的物理地址,这个和ip协议的路由寻址有点相似。

Linux通过将一个虚拟内存区域与一个磁盘上的对象关联起来,以初始化这个虚拟内存区域的内容,这个过程叫做内存映射。

一旦一个虚拟页面被初始化了,它就在一个由内核维护的专门的交换文件之间换来换去。交换文件也被称为交换空间,或者交换区域。

少量使用Swap交换空间是不会影响性能,只有当RAM资源出现瓶颈或者内存泄露,进程异常时导致频繁、大量使用交换分区才会导致严重性能问题。另外使用Swap交换分区频繁,还会引起kswapd0进程(虚拟内存管理中, 负责换页的)耗用大量CPU资源,导致CPU飙升。

Concepts overview — The Linux Kernel documentation

Linux中的内存管理是一个复杂的系统,经过多年的发展,它包含越来越多的功能,以支持从 MMU-less microcontrollers 到 supercomputers 的各种系统。

没有MMU内存管理的系统被称为 nommu ,它值得写一份专门的文档进行描述。

尽管有些概念是相同的,这里我们假设MMU可用,CPU可以将虚拟地址转换为物理地址。

计算机系统中的物理内存是有限资源,即便支持内存热插拔,其可以安装的内存也有限的。物理内存不一定必须是连续的;它可以作为一组不同的地址范围被访问。此外,不同的CPU架构,甚至同架构的不同实现对如何定义这些地址范围都是不同的。

这使得直接处理物理内存异常复杂,为了避免这种复杂性,开发了 虚拟内存 (virtual memory) 的概念。

虚拟内存从应用软件中抽象出物理内存的细节,只允许在物理内存中保留需要的信息 (demand paging) ,并提供一种机制来保护和控制进程之间的数据共享。

通过虚拟内存,每次内存访问都访问一个 虚拟地址 。当CPU对从系统内存读取(或写入)的指令进行解码时,它将该指令中编码的虚拟地址转换为内存控制器可以理解的物理地址。

物理内存被切分为 页帧 page frames 页 pages 。页的大小是基于架构的。一些架构允许从几个支持的值中选择页大小;此选择在内核编译时设置到内核配置。

每个物理内存页都可以映射为一个或多个 虚拟页(virtual pages) 。映射关系描述在 页表(page tables) 中,页表将程序使用的虚拟地址转换为物理内存地址。页表以层次结构组织。

最底层的表包含软件使用的实际内存页的物理地址。较高层的表包含较低层表页的物理地址。顶层表的指针驻留在寄存器中。

当CPU进行地址转换的时候,它使用寄存器访问顶级页表。

虚拟地址的高位,用于顶级页表的条目索引。然后,通过该条目访问下级,下级的虚拟地址位又作为其下下级页表的索引。虚拟地址的最低位定义实际页内的偏移量。

地址转换需要多次内存访问,而内存访问相对于CPU速度来说比较慢。为了避免在地址转换上花费宝贵的处理器周期,CPU维护着一个称为 TLB (Translation Lookaside Buffer)的用于地址转换缓存(cache)。通常TLB是非常稀缺的资源,需要大内存工作应用程序会因为TLB未命中而影响性能。

很多现代CPU架构允许页表的高层直接映射到内存页。例如,x86架构,可以通过二级、三级页表的条目映射2M甚至1G内存页。在Linux中,这些内存页称为 大页 (Huge) 。大页的使用显著降低了TLB的压力,提高了TLB命中率,从而提高了系统的整体性能。

Linux提供两种机制开启使用大页映射物理内存。

第一个是 HugeTLB 文件系统,即 hugetlbfs 。它是一个伪文件系统,使用RAM作为其存储。在此文件系统中创建的文件,数据驻留在内存中,并使用大页进行映射。

关于 HugeTLB Pages

另一个被称为 THP (Transparent HugePages) ,后出的开启大页映射物理内存的机制。

hugetlbfs 不同,hugetlbfs要求用户和/或系统管理员配置系统内存的哪些部分应该并可以被大页映射;THP透明地管理这些映射并获取名称。

关于 Transparent Hugepage Support

通常,硬件对不同物理内存范围的访问方式有所限制。某些情况下,设备不能对所有可寻址内存执行DMA。在其他情况下,物理内存的大小超过虚拟内存的最大可寻址大小,需要采取特殊措施来访问部分内存。还有些情况,物理内存的尺寸超过了虚拟内存的最大可寻址尺寸,需要采取特殊措施来访问部分内存。

Linux根据内存页的使用情况,将其组合为多个 zones 。比如, ZONE_DMA 包含设备用于DMA的内存, ZONE_HIGHMEM 包含未永久映射到内核地址空间的内存, ZONE_NORMAL 包含正常寻址内存页。

内存zones的实际层次架构取决于硬件,因为并非所有架构都定义了所有的zones,不同平台对DMA的要求也不同。

多处理器机器很多基于 NUMA (Non-Uniform Memory Access system - 非统一内存访问系统 )架构。 在这样的系统中,根据与处理器的“距离”,内存被安排成具有不同访问延迟的 banks 。每个 bank 被称为一个 node ,Linux为每个 node 构造一个独立的内存管理子系统。 Node 有自己的zones集合、free&used页面列表,以及各种统计计数器。

What is NUMA?

NUMA Memory Policy

物理内存易失,将数据放入内存的常见情况是读取文件。读取文件时,数据会放入 页面缓存(page cache) ,可以在再次读取时避免耗时的磁盘访问。同样,写文件时,数据也会被放入 页面缓存 ,并最终进入存储设备。被写入的页被标记为 脏页(dirty page) ,当Linux决定将其重用时,它会将更新的数据同步到设备上的文件。

匿名内存 anonymous memory 匿名映射 anonymous mappings 表示没有后置文件系统的内存。这些映射是为程序的stack和heap隐式创建的,或调用mmap(2)显式创建的。通常,匿名映射只定义允许程序访问的虚拟内存区域。读,会创建一个页表条目,该条目引用一个填充有零的特殊物理页。写,则分配一个常规物理页来保存写入数据。该页将被标记为脏页,如果内核决定重用该页,则脏页将被交换出去 swapped out

纵贯整个系统生命周期,物理页可用于存储不同类型的数据。它可以是内核内部数据结构、设备驱动DMA缓冲区、读取自文件系统的数据、用户空间进程分配的内存等。

根据内存页使用情况,Linux内存管理会区别处理。可以随时释放的页面称为 可回收(reclaimable) 页面,因为它们把数据缓存到了其他地方(比如,硬盘),或者被swap out到硬盘上。

可回收页最值得注意的是 页面缓存 匿名页面

在大多数情况下,存放内部内核数据的页,和用作DMA缓冲区的页无法重用,它们将保持现状直到用户释放。这样的被称为 不可回收页(unreclaimable)

然而,在特定情况下,即便是内核数据结构占用的页面也会被回收。

例如,文件系统元数据的缓存(in-memory)可以从存储设备中重新读取,因此,当系统存在内存压力时,可以从主内存中丢弃它们。

释放可回收物理内存页并重新调整其用途的过程称为 (surprise!) reclaim

Linux支持异步或同步回收页,取决于系统的状态。

当系统负载不高时,大部分内存是空闲的,可以立即从空闲页得到分配。

当系统负载提升后,空闲页减少,当达到某个阈值( low watermark )时,内存分配请求将唤醒 kswapd 守护进程。它将以异步的方式扫描内存页。如果内存页中的数据在其他地方也有,则释放这些内存页;或者退出内存到后置存储设备(关联 脏页 )。

随着内存使用量进一步增加,并达到另一个阈值- min watermark -将触发回收。这种情况下,分配将暂停,直到回收到足够的内存页。

当系统运行时,任务分配并释放内存,内存变得碎片化。

虽然使用虚拟内存可以将分散的物理页表示为虚拟连续范围,但有时需要分配大的连续的物理内存。这种需求可能会提升。例如,当设备驱动需要一个大的DMA缓冲区时,或当THP分配一个大页时。

内存地址压缩(compaction ) 解决了碎片问题。

该机制将占用的页从内存zone的下部移动到上部的空闲页。压缩扫描完成后,zone开始处的空闲页就并在一起了,分配较大的连续物理内存就可行了。

reclaim 类似, compaction 可以在 kcompactd守护进程中异步进行,也可以作为内存分配请求的结果同步进行。

在存在负载的机器上,内存可能会耗尽,内核无法回收到足够的内存以继续运行。

为了保障系统的其余部分,引入了 OOM killer

OOM killer 选择牺牲一个任务来保障系统的总体健康。选定的任务被killed,以期望在它退出后释放足够的内存以继续正常的 *** 作。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/8522333.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-17
下一篇 2023-04-17

发表评论

登录后才能评论

评论列表(0条)

保存